【題目】某地政府為了幫助當?shù)剞r(nóng)民脫貧致富,開發(fā)了一種新型水果類食品,該食品生產(chǎn)成本為每件8.當天生產(chǎn)當天銷售時,銷售價為每件12元,當天未賣出的則只能賣給水果罐頭廠,每件只能賣5.每天的銷售量與當天的氣溫有關,根據(jù)市場調查,若氣溫不低于,則銷售5000件;若氣溫位于,則銷售3500件;若氣溫低于,則銷售2000.為制定今年8月份的生產(chǎn)計劃,統(tǒng)計了前三年8月份的氣溫范圍數(shù)據(jù),得到下面的頻數(shù)分布表:

氣溫范圍

(單位:)

天數(shù)

4

14

36

21

15

以氣溫范圍位于各區(qū)間的頻率代替氣溫范圍位于該區(qū)間的概率.

(1)求今年8月份這種食品一天銷售量(單位:件)的分布列和數(shù)學期望值;

(2)設8月份一天銷售這種食品的利潤為(單位:元),當8月份這種食品一天生產(chǎn)量(單位:件)為多少時,的數(shù)學期望值最大,最大值為多少

【答案】1)見解析,; 2)當時,的數(shù)學期望達到最大值,最大值為.

【解析】

(1)今年8月份這種食品一天的銷量的可能取值為2000、3500、5000件,求出,,即可求得隨機變量的分布列和數(shù)學期望.

(2)由題意知,這種食品一天的需求量至多為5000件,至少為2000件,所以只需要考慮.分別討論,,即可求得的數(shù)學期望最大值.

(1)今年8月份這種食品一天的銷量的可能取值為2000、3500、5000件,

于是的分布列為:

2000

3500

5000

0.2

0.4

0.4

的數(shù)學期望為.

(2)由題意知,這種食品一天的需求量至多為5000件,至少為2000件,

只需要考慮,

時,

若氣溫不低于30度,則;

若氣溫位于,則;

若氣溫低于25度,則;

此時,

時,

若氣溫不低于25度,則;

若氣溫低于25度,則;

此時;

時,的數(shù)學期望達到最大值,最大值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知、、是同一平面上不共線的四點,若存在一組正實數(shù)、,使得,則三個角、( )

A. 都是鈍角B. 至少有兩個鈍角

C. 恰有兩個鈍角D. 至多有兩個鈍角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的值域是,有下列結論:①當時,; ②當時,;③當時,; ④當時,.其中結論正確的所有的序號是( )

A.①②B.③④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合,且),若存在非空集合,使得,且,并任意,都有,則稱集合S具有性質P,稱為集合SP子集.

1)當時,試說明集合S具有性質P,并寫出相應的P子集;

2)若集合S具有性質P,集合T是集合S的一個P子集,設,求證:任意,,都有

3)求證:對任意正整數(shù),集合S具有性質P.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】英國統(tǒng)計學家EH.辛普森1951年提出了著名的辛普森悖論,下面這個案例可以讓我們感受到這個悖論.有甲乙兩名法官,他們都在民事庭和行政庭主持審理案件,他們審理的部分案件被提出上訴.記錄這些被上述案件的終審結果如下表所示(單位:件):

法官甲

法官乙

終審結果

民事庭

行政庭

合計

終審結果

民事庭

行政庭

合計

維持

29

100

129

維持

90

20

110

推翻

3

18

21

推翻

10

5

15

合計

32

118

150

合計

100

25

125

記甲法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,,記乙法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,,則下面說法正確的是

A. ,,B. ,

C. ,,D. ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知下圖是四面體及其三視圖,的中點,的中點.

1)求四面體的體積;

2)求與平面所成的角;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,點在橢圓上,焦點為,圓O的直徑為

1)求橢圓C及圓O的標準方程;

2)設直線l與圓O相切于第一象限內的點P,且直線l與橢圓C交于兩點.記 的面積為,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國已進入新時代中國特色社會主義時期,人民生活水平不斷提高.某市隨機統(tǒng)計了城區(qū)若干戶市民十月人均生活支出比九月人均生活支出增加量(記為P元)的情況,并根據(jù)統(tǒng)計數(shù)據(jù)制成如圖頻率分布直方圖.

1)根據(jù)頻率分布直方圖估算P的平均值;

2)若該市城區(qū)有4戶市民十月人均生活支出比九月人均生活支出分別增加了42元,50元,52元,60元,從這4戶中隨機抽取2戶,求這2P值的和超過100元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),圖象的一個對稱中心,圖象的一條對稱軸,且上單調,則符合條件的值之和為________.

查看答案和解析>>

同步練習冊答案