【題目】如圖所示的幾何體中,

(1)求證:平面ABCD

(2),點FEC上,且滿足EF=2FC,求二面角FADC的余弦值.

【答案】(1)詳見解析(2)

【解析】

(1)在中,根據(jù)已知的邊、角條件運用余弦定理可得出,再由

,

得出平面ABE.,由線面垂直的性質(zhì)得,再根據(jù)線面垂直的判定定理得證;

(2)在以B為原點,建立空間直角坐標系,得出點的坐標,求出面的法向量,由(1)得平面ABCD,所以為平面ABCD的一個法向量,再根據(jù)向量的夾角公式求得二面角的余弦值.

(1)在中,

由余弦定理可得

所以,所以所以是直角三角形,.

,所以平面ABE.

因為平面ABE,所以,因為,

所以平面ABCD.

(2)由(1)知,平面ABE,所以平面平面AEB,在平面ABE中,過點B,則平面BEC,如圖,以B為原點,BE,BC所在直線分別為軸建立空間直角坐標系

,

因為,所以,易知,

設平面ADF的法向量為

所以為平面ADF的一個法向量,

由(1)知平面ABCD,所以為平面ABCD的一個法向量.

設二面角的平面角為,

由圖知為銳角,則

所以二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知是拋物線的焦點,是拋物線上一點,且.

1)求拋物線的標準方程;

2)過點的動直線交拋物線于兩點,拋物線上是否存在一個定點,使得以弦為直徑的圓恒過點?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,底面ABC為正三角形,底面ABC,,點在線段上,平面平面

1)請指出點的位置,并給出證明;

2)若,求與平面ABE夾角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線)的焦點F且斜率為的直線交拋物線CMN兩點,且

1)求p的值;

2)拋物線C上一點,直線(其中)與拋物線C交于A,B兩個不同的點(A,B均與點Q不重合).設直線QAQB的斜率分別為,.直線l是否過定點?如果是,請求出所有定點;如果不是,請說明理由;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地擬在一個U形水面PABQ(∠A=B=90°)上修一條堤壩(EAP上,NBQ上),圍出一個封閉區(qū)域EABN,用以種植水生植物.為了美觀起見,決定從AB上點M處分別向點E,N2條分隔線MEMN,將所圍區(qū)域分成3個部分(如圖),每部分種植不同的水生植物.已知AB=aEM=BM,∠MEN=90°,設所拉分隔線總長度為l

1)設∠AME=2θ,求用θ表示的l函數(shù)表達式,并寫出定義域;

2)求l的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列的公差不為0,其前項和為,,且,,成等比數(shù)列.

1)求數(shù)列的通項公式及的最小值;

2)若數(shù)列是等差數(shù)列,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】Sn為等比數(shù)列的前n項和,已知S2=2,S3=-6.

(1)求的通項公式;

(2)求Sn,并判斷Sn+1,SnSn+2是否成等差數(shù)列。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,,EAB的中點將沿直線DE折起到的位置,使平面平面BCDE

1)證明:平面PDE

2)設F為線段PC的中點,求四面體D-PEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓M(x1)2y2=1,圓N(x1)2y2=9,動圓P與圓M外切并與圓N內(nèi)切,圓心P的軌跡為曲線 C

)求C的方程;

l是與圓P,圓M都相切的一條直線,l與曲線C交于AB兩點,當圓P的半徑最長時,求|AB|.

查看答案和解析>>

同步練習冊答案