精英家教網 > 高中數學 > 題目詳情

【題目】在中學生綜合素質評價某個維度的測評中,分“優(yōu)秀、合格、尚待改進”三個等級進行學生互評,某校高二年級有男生500人,女生400人,為了了解性別對維度測評結果的影響,采用分層抽樣方法從高二年級抽取了45名學生的測評結果,并作出頻率統(tǒng)計表如表: 表一:男生測評結果統(tǒng)計

等級

優(yōu)秀

合格

尚待改進

頻數

15

x

5

表二:女生測評結果統(tǒng)計

等級

優(yōu)秀

合格

尚待改進

頻數

15

3

y

參考數據:

P(K2≥k0

0.10

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

(參考公式: ,其中n=a+b+c+d).
(1)計算x,y的值;
(2)由表一表二中統(tǒng)計數據完成2×2列聯(lián)表,并判斷是否有90%的把握認為“測評結果優(yōu)秀與性別有關”.

男生

女生

總計

優(yōu)秀

非優(yōu)秀

總計

【答案】
(1)解:設從高一年級男生中抽出m人,

,解得m=25,

∴x=25﹣20=5,y=20﹣18=2


(2)解:2×2列聯(lián)表如下

男生

女生

總計

優(yōu)秀

15

15

30

非優(yōu)秀

10

5

15

總計

25

20

45

,

∴沒有90%的把握認為“測評結果優(yōu)秀與性別有關”


【解析】(1)根據分層抽樣的定義和男生所占的比例列出方程,求出m的值,再由條件求出x、y的值;(2)由(1)列出列聯(lián)表,根據數據和公式求出K2的觀測值,由表格和獨立性檢驗即可得到答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)求函數的單調區(qū)間;

(2)若關于的不等式恒成立,求整數的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知2件次品和3件正品混放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機檢測一件產品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時檢測結束.

)求第一次檢測出的是次品且第二次檢測出的是正品的概率;

)已知每檢測一件產品需要費用100元,設表示直到檢測出2件次品或者檢測出3件正品時所需要的檢測費用(單位:元),求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出下列五個命題: ①函數 的一條對稱軸是x= ;
②函數y=tanx的圖象關于點( ,0)對稱;
③正弦函數在第一象限為增函數;
④若 ,則x1﹣x2=kπ,其中k∈Z;
⑤函數f(x)=sinx+2|sinx|,x∈[0,2π]的圖象與直線y=k有且僅有兩個不同的交點,則k的取值范圍為(1,3).
以上五個命題中正確的有(填寫所有正確命題的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將三項式(x2+x+1)n展開,當n=1,2,3,…時,得到如下所示的展開式,如圖所示的廣義楊輝三角形: (x2+x+1)0=1
(x2+x+1)1=x2+x+1
(x2+x+1)2=x4+2x3+3x2+2x+1
(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1
觀察多項式系數之間的關系,可以仿照楊輝三角形構造如圖所示的廣義楊輝三角形,其構造方法:第0行為1,以下各行每個數是它頭上與左右兩肩上3數(不足3數的,缺少的數計為0)之和,第k行共有2k+1個數.若在(a+x)(x2+x+1)4的展開式中,x6項的系數為46,則實數a的值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐P—ABCD中,PD底面ABCDAB//DC,ADDCAB=AD=1DC=2,PD=,M為棱PB的中點.

(1)證明:DM平面PBC;

(2)求二面角A—DM—C的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中為常數.

(1)當,且時,判斷函數是否存在極值,若存在,求出極值點;若不存在,說明理由;

(2)若,對任意的正整數,當時,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓O的方程為x2+y2=4,P是圓O上的一個動點,若線段OP的垂直平分線總是被平面區(qū)域|x|+|y|≥a覆蓋,則實數a的取值范圍是(
A.0≤a≤2
B.
C.0≤a≤1
D.a≤1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lnx+x2﹣ax(a∈R)
(1)a=3時,求函數f(x)的單調區(qū)間;
(2)若f(x)≤2x2恒成立,求實數a的取值范圍;
(3)求證;lnn> + +1 +…+ (n∈N+)且n≥2.

查看答案和解析>>

同步練習冊答案