【題目】在中學生綜合素質評價某個維度的測評中,分“優(yōu)秀、合格、尚待改進”三個等級進行學生互評,某校高二年級有男生500人,女生400人,為了了解性別對維度測評結果的影響,采用分層抽樣方法從高二年級抽取了45名學生的測評結果,并作出頻率統(tǒng)計表如表: 表一:男生測評結果統(tǒng)計
等級 | 優(yōu)秀 | 合格 | 尚待改進 |
頻數 | 15 | x | 5 |
表二:女生測評結果統(tǒng)計
等級 | 優(yōu)秀 | 合格 | 尚待改進 |
頻數 | 15 | 3 | y |
參考數據:
P(K2≥k0) | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
(參考公式: ,其中n=a+b+c+d).
(1)計算x,y的值;
(2)由表一表二中統(tǒng)計數據完成2×2列聯(lián)表,并判斷是否有90%的把握認為“測評結果優(yōu)秀與性別有關”.
男生 | 女生 | 總計 | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計 |
科目:高中數學 來源: 題型:
【題目】已知2件次品和3件正品混放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機檢測一件產品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時檢測結束.
(Ⅰ)求第一次檢測出的是次品且第二次檢測出的是正品的概率;
(Ⅱ)已知每檢測一件產品需要費用100元,設表示直到檢測出2件次品或者檢測出3件正品時所需要的檢測費用(單位:元),求的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列五個命題: ①函數 的一條對稱軸是x= ;
②函數y=tanx的圖象關于點( ,0)對稱;
③正弦函數在第一象限為增函數;
④若 ,則x1﹣x2=kπ,其中k∈Z;
⑤函數f(x)=sinx+2|sinx|,x∈[0,2π]的圖象與直線y=k有且僅有兩個不同的交點,則k的取值范圍為(1,3).
以上五個命題中正確的有(填寫所有正確命題的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將三項式(x2+x+1)n展開,當n=1,2,3,…時,得到如下所示的展開式,如圖所示的廣義楊輝三角形: (x2+x+1)0=1
(x2+x+1)1=x2+x+1
(x2+x+1)2=x4+2x3+3x2+2x+1
(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1
觀察多項式系數之間的關系,可以仿照楊輝三角形構造如圖所示的廣義楊輝三角形,其構造方法:第0行為1,以下各行每個數是它頭上與左右兩肩上3數(不足3數的,缺少的數計為0)之和,第k行共有2k+1個數.若在(a+x)(x2+x+1)4的展開式中,x6項的系數為46,則實數a的值為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P—ABCD中,PD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=2,PD=,M為棱PB的中點.
(1)證明:DM平面PBC;
(2)求二面角A—DM—C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中為常數.
(1)當,且時,判斷函數是否存在極值,若存在,求出極值點;若不存在,說明理由;
(2)若,對任意的正整數,當時,求證:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓O的方程為x2+y2=4,P是圓O上的一個動點,若線段OP的垂直平分線總是被平面區(qū)域|x|+|y|≥a覆蓋,則實數a的取值范圍是( )
A.0≤a≤2
B.
C.0≤a≤1
D.a≤1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx+x2﹣ax(a∈R)
(1)a=3時,求函數f(x)的單調區(qū)間;
(2)若f(x)≤2x2恒成立,求實數a的取值范圍;
(3)求證;lnn> + +1 +…+ (n∈N+)且n≥2.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com