命題:“存在x∈R,使得x2+2x+5=0”的否定為_(kāi)_______.

答案:
解析:

對(duì)任意數(shù)x∈R,都有x2+2x+5≠0


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四種說(shuō)法:
(1)命題:“存在x∈R,使得x2+1>3x”的否定是“對(duì)任意x∈R,都有x2+1≤3x”.
(2)若直線a、b在平面α內(nèi)的射影互相垂直,則a⊥b.
(3)已知一組數(shù)據(jù)為20、30、40、50、60、70,則這組數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù)的大小關(guān)系是:眾數(shù)>中位數(shù)>平均數(shù).
(4)已知回歸方程
?
y
=4.4x+838.19
,則可估計(jì)x與y的增長(zhǎng)速度之比約為
5
22

(5)若A(-2,3),B(3,-2),C(
1
2
,m)三點(diǎn)共線,則m的值為2.
其中所有正確說(shuō)法的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)命題P:“任意x∈R,x2-2x>a”,命題Q“存在x∈R,x2+2ax+2-a=0”;如果“P或Q”為真,“P且Q”為假,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四種說(shuō)法正確的個(gè)數(shù)是( 。
(1)命題:“存在x∈R,使得x2+1>3x”的否定是“存在x∈R,使得x2+1≤3x”
(2)若直線a、b在平面α內(nèi)的射影互相垂直,則a⊥b.
(3)已知一組數(shù)據(jù)為20,30,40,50,60,60,70,則這組數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù)的大小關(guān)系是:眾數(shù)>中位數(shù)>平均數(shù).
(4)若A(-2,-3),B(3,-2),C(
1
2
,m)三點(diǎn)共線,則m的值為2.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)命題P:“任意x∈R,x2-2x>a”,命題Q“存在x∈R,x2+2ax+2-a=0”;如果“P或Q”為真,“P且Q”為假,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江西省高考數(shù)學(xué)仿真押題卷05(文科)(解析版) 題型:解答題

下列四種說(shuō)法:
(1)命題:“存在x∈R,使得x2+1>3x”的否定是“對(duì)任意x∈R,都有x2+1≤3x”.
(2)若直線a、b在平面α內(nèi)的射影互相垂直,則a⊥b.
(3)已知一組數(shù)據(jù)為20、30、40、50、60、70,則這組數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù)的大小關(guān)系是:眾數(shù)>中位數(shù)>平均數(shù).
(4)已知回歸方程,則可估計(jì)x與y的增長(zhǎng)速度之比約為
(5)若A(-2,3),B(3,-2),C(,m)三點(diǎn)共線,則m的值為2.
其中所有正確說(shuō)法的序號(hào)是   

查看答案和解析>>

同步練習(xí)冊(cè)答案