挪威數(shù)學家阿貝爾,曾經(jīng)根據(jù)階梯形圖形的兩種不同分割(如下圖),利用它們的面積關系發(fā)現(xiàn)了一個重要的恒等式一阿貝爾公式:

a1b1+a2b2+a3b3+ +anbn=a1(b1-b2)+L2(b2-b3)+L3(b3-b4)+ +Ln-1(bn-1-bn)+Lnbn

則其中:(I)L3=       ;(Ⅱ)Ln=       

 

【答案】

(Ⅰ);(Ⅱ) 

【解析】

試題分析:根據(jù)題意,由于利用它們的面積關系發(fā)現(xiàn)了一個重要的恒等式一阿貝爾公式:

a1b1+a2b2+a3b3+ +anbn=a1(b1-b2)+L2(b2-b3)+L3(b3-b4)+ +Ln-1(bn-1-bn)+Lnbn,則可知L3=,而對于該結論加以推廣可知,Ln=。

考點:分割法的運用

點評:主要是考查了數(shù)列的規(guī)律性的運用,屬于中檔題。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•黃岡模擬)挪威數(shù)學家阿貝爾,曾經(jīng)根據(jù)階梯形圖形的兩種不同分割(如圖),利用它們的面積關系發(fā)現(xiàn)了一個重要的恒等式一阿貝爾公式:
a1b1+a2b2+a3b3+…+anbn=a1(b1-b2)+L2(b2-b3)+L3(b3-b4)+…+Ln-1(bn-1-bn)+Lnbn
則其中:(I)L3=
a1+a2+a3
a1+a2+a3
;(Ⅱ)Ln=
a1+a2+a3+…+an
a1+a2+a3+…+an

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖北七市(州)高三年級聯(lián)合考試理科數(shù)學試卷(解析版) 題型:填空題

挪威數(shù)學家阿貝爾,曾經(jīng)根據(jù)階梯形圖形的兩種不同分割(如下圖),利用它們的面積關系發(fā)現(xiàn)了一個重要的恒等式——阿貝爾公式:

則其中:(I)L3=        ;(Ⅱ)Ln=        

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖北七市(州)高三年級聯(lián)合考試文科數(shù)學試卷(解析版) 題型:填空題

挪威數(shù)學家阿貝爾,曾經(jīng)根據(jù)階梯形圖形的兩種不同分割(如下圖),利用它們的面積關系發(fā)現(xiàn)了一個重要的恒等式——阿貝爾公式:

則其中:(I)L3=        ;(Ⅱ)Ln=       

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖北荊州、黃岡、襄陽、十堰、宜昌、孝感、恩施七市高三4月聯(lián)考理數(shù)學卷(解析版) 題型:填空題

挪威數(shù)學家阿貝爾,曾經(jīng)根據(jù)階梯形圖形的兩種不同分割(如下圖),利用它們的面積關系發(fā)現(xiàn)了一個重要的恒等式一阿貝爾公式:

a1b1+a2b2+a3b3++anbn=a1(b1-b2)+L2(b2-b3)+L3(b3-b4)++Ln-1(bn-1-bn)+Lnbn

則其中:(I)L3=       ;(Ⅱ)Ln=       

 

查看答案和解析>>

同步練習冊答案