Aa,Ba,AB=6ABa所成的角為45°,則Aa的距離為(。

A3           B3

C3        D2

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=mx3+nx2(m、n∈R,m≠0)的圖象在(2,f(2))處的切線與x軸平行.
(1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;
(2)證明:對(duì)任意實(shí)數(shù)0<x1<x2<1,關(guān)于x的方程:f′(x)-
f(x2)-f(x1)
x2-x1
=0
在(x1,x2)恒有實(shí)數(shù)解
(3)結(jié)合(2)的結(jié)論,其實(shí)我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點(diǎn)x0,使得f′(x0)=
f(b)-f(a)
b-a
.如我們所學(xué)過(guò)的指、對(duì)數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理?xiàng)l件.試用拉格朗日中值定理證明:
當(dāng)0<a<b時(shí),
b-a
b
<ln
b
a
b-a
a
(可不用證明函數(shù)的連續(xù)性和可導(dǎo)性).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于集合A,B,我們把集合{(a,b)|a∈A,b∈B}記作A×B.
例如:A={1,2},B={3,4},則有A×B={(1,3),(1,4),(2,3),(2,4)},B×A={(3,1),(3,2),(4,1),(4,2)},A×A={(1,1),(1,2),(2,1),(2,2)},B×B={(3,3),(3,4),(4,3),(4,4)},
據(jù)此,試解答下列問(wèn)題:
(1)已知C={m},D={1,2,3},求C×D;
(2)已知A×B={(1,2),(2,2)},求集合A,B;
(3)若A中有3個(gè)元素,B中有4個(gè)元素,試確定A×B有幾個(gè)元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:013

AaBa,AB=6ABa所成的角為45°,則Aa的距離為(。

A3           B3

C3        D2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,若aa+ab=12,SN是數(shù)列{an}的前n項(xiàng)和,則SN的值為    (    )

    A.48              B.54              C.60              D.66

查看答案和解析>>

同步練習(xí)冊(cè)答案