設(shè)正實(shí)數(shù)滿足,則當(dāng)取得最大值時(shí), 的最大值是(   )

A. 0            B. 1                     C.                                     D. 3

 

【答案】

B

【解析】

試題分析:正實(shí)數(shù)滿足,則,代入,得,當(dāng)且僅當(dāng),即時(shí)取等號(hào),此時(shí),

,故選B.

考點(diǎn):基本不等式應(yīng)用.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=a2x-
1
2
x3,x∈(-2,2)為正常數(shù).
(1)可以證明:定理“若a、b∈R*,則
a+b
2
ab
(當(dāng)且僅當(dāng)a=b時(shí)取等號(hào))”推廣到三個(gè)正數(shù)時(shí)結(jié)論是正確的,試寫出推廣后的結(jié)論(無需證明);
(2)若f(x)>0在(0,2)上恒成立,且函數(shù)f(x)的最大值大于1,求實(shí)數(shù)a的取值范圍,并由此猜測(cè)y=f(x)的單調(diào)性(無需證明);
(3)對(duì)滿足(2)的條件的一個(gè)常數(shù)a,設(shè)x=x1時(shí),f(x)取得最大值.試構(gòu)造一個(gè)定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數(shù)g(x),使當(dāng)x∈(-2,2)時(shí),g(x)=f(x),當(dāng)x∈D時(shí),g(x)取得最大值的自變量的值構(gòu)成以x1為首項(xiàng)的等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省菏澤市高三5月高考沖刺題理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.

(Ⅰ)求實(shí)數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說明理由.

【解析】第一問當(dāng)時(shí),,則

依題意得:,即    解得

第二問當(dāng)時(shí),,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

第三問假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

(Ⅰ)當(dāng)時(shí),,則。

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當(dāng)時(shí),,令

當(dāng)變化時(shí),的變化情況如下表:

0

0

+

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

,,!上的最大值為2.

②當(dāng)時(shí), .當(dāng)時(shí), ,最大值為0;

當(dāng)時(shí), 上單調(diào)遞增。∴最大值為。

綜上,當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為2;

當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為。

(Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時(shí),

代入(*)式得:    即   (**)

 ,則

上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

∴對(duì)于,方程(**)總有解,即方程(*)總有解。

因此,對(duì)任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:松江區(qū)模擬 題型:解答題

已知f(x)=a2x-
1
2
x3,x∈(-2,2)為正常數(shù).
(1)可以證明:定理“若a、b∈R*,則
a+b
2
ab
(當(dāng)且僅當(dāng)a=b時(shí)取等號(hào))”推廣到三個(gè)正數(shù)時(shí)結(jié)論是正確的,試寫出推廣后的結(jié)論(無需證明);
(2)若f(x)>0在(0,2)上恒成立,且函數(shù)f(x)的最大值大于1,求實(shí)數(shù)a的取值范圍,并由此猜測(cè)y=f(x)的單調(diào)性(無需證明);
(3)對(duì)滿足(2)的條件的一個(gè)常數(shù)a,設(shè)x=x1時(shí),f(x)取得最大值.試構(gòu)造一個(gè)定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數(shù)g(x),使當(dāng)x∈(-2,2)時(shí),g(x)=f(x),當(dāng)x∈D時(shí),g(x)取得最大值的自變量的值構(gòu)成以x1為首項(xiàng)的等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006年上海市八校高三聯(lián)考數(shù)學(xué)試卷(松江二中、青浦、七寶、育才、市二、行知、位育)(解析版) 題型:解答題

已知f(x)=a2x-x3,x∈(-2,2)為正常數(shù).
(1)可以證明:定理“若a、b∈R*,則(當(dāng)且僅當(dāng)a=b時(shí)取等號(hào))”推廣到三個(gè)正數(shù)時(shí)結(jié)論是正確的,試寫出推廣后的結(jié)論(無需證明);
(2)若f(x)>0在(0,2)上恒成立,且函數(shù)f(x)的最大值大于1,求實(shí)數(shù)a的取值范圍,并由此猜測(cè)y=f(x)的單調(diào)性(無需證明);
(3)對(duì)滿足(2)的條件的一個(gè)常數(shù)a,設(shè)x=x1時(shí),f(x)取得最大值.試構(gòu)造一個(gè)定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數(shù)g(x),使當(dāng)x∈(-2,2)時(shí),g(x)=f(x),當(dāng)x∈D時(shí),g(x)取得最大值的自變量的值構(gòu)成以x1為首項(xiàng)的等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考數(shù)學(xué)新題型解析選編(4)(解析版) 題型:解答題

已知f(x)=a2x-x3,x∈(-2,2)為正常數(shù).
(1)可以證明:定理“若a、b∈R*,則(當(dāng)且僅當(dāng)a=b時(shí)取等號(hào))”推廣到三個(gè)正數(shù)時(shí)結(jié)論是正確的,試寫出推廣后的結(jié)論(無需證明);
(2)若f(x)>0在(0,2)上恒成立,且函數(shù)f(x)的最大值大于1,求實(shí)數(shù)a的取值范圍,并由此猜測(cè)y=f(x)的單調(diào)性(無需證明);
(3)對(duì)滿足(2)的條件的一個(gè)常數(shù)a,設(shè)x=x1時(shí),f(x)取得最大值.試構(gòu)造一個(gè)定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數(shù)g(x),使當(dāng)x∈(-2,2)時(shí),g(x)=f(x),當(dāng)x∈D時(shí),g(x)取得最大值的自變量的值構(gòu)成以x1為首項(xiàng)的等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案