【題目】如圖,四棱錐的底面是正方形,側(cè)棱底面, 的中點(diǎn).

(1)求二面角的平面角的余弦值;

(2)在被上是否存在點(diǎn),使平面?證明你的結(jié)論.

【答案】(1);(2)見(jiàn)解析.

【解析】試題分析:(1)建立空間直角坐標(biāo)系,分別求出兩個(gè)平面的法向量,利用向量的有關(guān)運(yùn)算計(jì)算出兩個(gè)向量的夾角,進(jìn)而得到二面角平面角的余弦值;(2)假設(shè)存在點(diǎn),則直線所在的向量與平面的法向量平行,根據(jù)這個(gè)條件可得到一個(gè)方程,再根據(jù)有關(guān)知識(shí)判斷方程的解的情況.

試題解析:以為坐標(biāo)原點(diǎn),分別以 , 所在直線為軸、軸、軸建立空間直角坐標(biāo)系,

, , , ,

所以 , .

(1)設(shè)是平面的一個(gè)法向量,

則由,得;取,則

是平面的一個(gè)法向量.設(shè)二面角的平面角為,

,二面角為鈍角,余弦值為.

(2), , .

假設(shè)棱上存在點(diǎn),使平面,設(shè),( ),

,

, ,此時(shí),

即在棱上存在點(diǎn) ,使得平面.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)關(guān)于x的函數(shù)y=2cos2x-2acosx-(2a+1)的最小值為f(a),試確定滿足f(a)=的a的值,并求此時(shí)函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=elnx,g(x)=f(x)-(x+1).(e=2.718……)

(1)求函數(shù)g(x)的極大值;

(2)求證:1++…+>ln(n+1)(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)),將的圖象向左平移個(gè)單位長(zhǎng)度后得到的圖象,且在區(qū)間內(nèi)的最大值為.

(1)求實(shí)數(shù)的值;

(2)在中,內(nèi)角, , 的對(duì)邊分別是, , ,若,且,求的周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)),

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí)的兩個(gè)極值點(diǎn)為,).

證明:

,恰為的零點(diǎn)的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品的廣告費(fèi)支出與銷售額(單位:萬(wàn)元)之間有如下對(duì)應(yīng)數(shù)據(jù):

(1)求回歸直線方程;

(2)試預(yù)測(cè)廣告費(fèi)支出為萬(wàn)元時(shí),銷售額多大?

(3)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預(yù)測(cè)值與實(shí)際值之差的絕對(duì)值不超過(guò)的概率.(參考數(shù)據(jù): .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究教學(xué)方式對(duì)教學(xué)質(zhì)量的影響,某高中老師分別用兩種不同的教學(xué)方式對(duì)入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班進(jìn)行教學(xué)(勤奮程度和自覺(jué)性都一樣).以下莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績(jī).

(1)現(xiàn)從甲班數(shù)學(xué)成績(jī)不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績(jī)?yōu)?7分的同學(xué)至少有一名被抽中的概率;

(2)學(xué)校規(guī)定:成績(jī)不低于75分的為優(yōu)秀,請(qǐng)?zhí)顚?xiě)下面的列聯(lián)表,并判斷有多大把握認(rèn)為成績(jī)優(yōu)秀與教學(xué)方式有關(guān)

甲班

乙班

合計(jì)

優(yōu)秀

不優(yōu)秀

合計(jì)

下面臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

span>2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)接到生產(chǎn)3000臺(tái)某產(chǎn)品的A,B,C三種部件的訂單,每臺(tái)產(chǎn)品需要這三種部件的數(shù)量分別為2,2,1(單位:件).已知每個(gè)工人每天可生產(chǎn)A部件6件,或B部件3件,或C部件2件.該企業(yè)計(jì)劃安排200名工人分成三組分別生產(chǎn)這三種部件,生產(chǎn)B部件的人數(shù)與生產(chǎn)A部件的人數(shù)成正比,比例系數(shù)為k(k為正整數(shù)).

(1)設(shè)生產(chǎn)A部件的人數(shù)為x,分別寫(xiě)出完成A,B,C三種部件生產(chǎn)需要的時(shí)間;

(2)假設(shè)這三種部件的生產(chǎn)同時(shí)開(kāi)工,試確定正整數(shù)k的值,使完成訂單任務(wù)的時(shí)間最短,并給出時(shí)間最短時(shí)具體的人數(shù)分組方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),圓

(1)若過(guò)點(diǎn)的圓的切線只有一條,求的值及切線方程;

(2)若過(guò)點(diǎn)且在兩坐標(biāo)軸上截距相等的直線與圓相切,求的值及切線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案