設(shè)Sn=1+2+3+…+n,n∈N*,則函數(shù)f(n)=
Sn
(n+32)Sn+1
的最大值為( 。
A、
1
20
B、
1
30
C、
1
40
D、
1
50
分析:先化簡整理f(n),根據(jù)雙勾函數(shù)的性質(zhì)求得.
解答:解:∵sn=1+2+3+…+n=
n(n+1)
2

f(n)=
n(n+1)
2
(n+32)(
(n+1)(n+2)
2
)
n
n2+34n+64
1
n+
64
n
+34
1
50

故選D
點評:本題主要考查函數(shù)的轉(zhuǎn)化化歸和等差數(shù)列前n項和公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn=1+2+3+…+n,n∈N*,求f(n)=
Sn(n+32)Sn+1
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn=1+2+3+…+n,n∈N*,則函數(shù)f(n)=
Sn(n+32)Sn+1
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn=1-2+3-4+…+(-1)n-1•n,則S2012=
-1006
-1006

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn=1+2+3=…+n,n∈N*,則f(n)=
Sn
(n+7)Sn+1
的最大值為
2
33
2
33

查看答案和解析>>

同步練習(xí)冊答案