【題目】請您設計一個帳篷.它下部的形狀是高為1m的正六棱柱,上部的形狀是側(cè)棱長為3m的正六棱錐(如圖所示).試問當帳篷的頂點O到底面中心O1的距離為多少時,帳篷的體積最大?

【答案】解:設OO1為xm,(1<x<4). 則由題設可得正六棱錐底面邊長為: (m).
(求解過程為:
于是底面正六邊形的面積為(單位:m2
帳篷的體積為(單位:m3
可得:
求導數(shù),得
令V'(x)=0解得x=﹣2(不合題意,舍去),x=2.
當1<x<2時,V'(x)>0,V(x)為增函數(shù);
當2<x<4時,V'(x)<0,V(x)為減函數(shù).
所以當x=2時,V(x)最大.
答當OO1為2m時,帳篷的體積最大.

【解析】設出頂點O到底面中心o1的距離,再求底面邊長和底面面積,求出體積表達式,利用導數(shù)求出高為何時體積取得最大值.
【考點精析】利用函數(shù)的最大(小)值與導數(shù)對題目進行判斷即可得到答案,需要熟知求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)的定義域為R,f(1)=3,對任意x∈R,f′(x)<2,則f(x)<2x+1的解集為(
A.(1,+∞)
B.(﹣1,1)
C.(﹣∞,1)
D.(﹣∞,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)f(x)=x3﹣3x2 , 給出下列四個命題: ①f(x)是增函數(shù),無極值;
②f(x)是減函數(shù),有極值;
③f(x)在區(qū)間(﹣∞,0]及[2,+∞)上是增函數(shù);
④f(x)有極大值為0,極小值﹣4;
其中正確命題的個數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設a,b,c∈(﹣∞,0),則a+ ,b+ ,c+
A.都不大于﹣2
B.都不小于﹣2
C.至少有一個不大于﹣2
D.至少有一個不小于﹣2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù),.

)求的單調(diào)區(qū)間和極值;

)證明:若存在零點,則在區(qū)間上僅有一個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)植被被破壞,土地沙化越來越嚴重,最近三年測得沙漠增加值分別為0.2萬公頃、0.4萬公頃、0.76萬公頃,則沙漠增加數(shù)y(萬公頃)關(guān)于年數(shù)x的函數(shù)關(guān)系較為近似的是(
A.y=0.2x
B.
C.
D.y=0.2+log16x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB是圓O的直徑,點C是圓O上異于AB的點,直線PC⊥平面ABCE,F分別是PA,PC的中點.

(1)記平面BEF與平面ABC的交線為l,試判斷直線l與平面PAC的位置關(guān)系,并加以證明;

(2)AB=PC=2,BC=1,求三棱錐P-BEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)判斷f(x)的奇偶性并證明;
(2)若f(x)的定義域為[α,β](β>α>0),判斷f(x)在定義域上的增減性,并加以證明;
(3)若0<m<1,使f(x)的值域為[logmm(β﹣1),logmm(α﹣1)]的定義域區(qū)間[α,β](β>α>0)是否存在?若存在,求出[α,β],若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

)求數(shù)的最小正周期和對稱軸方程.

)銳角的三個頂點, 所對邊分別為, , ,若, , ,求及邊

)若中, ,求的取值范圍.

查看答案和解析>>

同步練習冊答案