19.某幾何體的三視圖如圖所示,則該幾何體的外接球的半徑為( 。
A.2$\sqrt{3}$B.$\sqrt{3}$C.3$\sqrt{2}$D.$\sqrt{2}$

分析 由已知中的三視圖可得:該幾何體是一個棱長為2的正方體,切去四個角所得的正四面體,其外接球等同于棱長為2的正方體的外接球,進而得到答案.

解答 解:由已知中的三視圖可得:
該幾何體是一個棱長為2的正方體,切去四個角所得的正四面體,
其外接球等同于棱長為2的正方體的外接球,
故2R=$\sqrt{{2}^{2}+{2}^{2}+{2}^{2}}$=2$\sqrt{3}$,
故R=$\sqrt{3}$,
故選:B

點評 三視圖中長對正,高對齊,寬相等;由三視圖想象出直觀圖,一般需從俯視圖構建直觀圖,本題考查了學生的空間想象力,識圖能力及計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.某百貨公司1~6月份的銷售量x與利潤y的統(tǒng)計數(shù)據如表:
月份123456
銷售量x(萬件)1011131286
利潤y(萬元)222529261612
(1)根據2~5月份的統(tǒng)計數(shù)據,求出y關于x的回歸直線方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)若由回歸直線方程得到的估計數(shù)據與剩下的檢驗數(shù)據的誤差均不超過2萬元,則認為得到的回歸直線方程是理想的,試問所得回歸直線方程是否理想?
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$)=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知等比數(shù)列{an}中,an+1=36,an+3=m,an+5=4,則圓錐曲線$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{3}$=1的離心率為( 。
A.$\sqrt{5}$B.$\frac{\sqrt{3}}{2}$C.$\sqrt{5}$或$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知兩點A(3,2),B(-1,2),圓C以線段AB為直徑.
(Ⅰ)求圓C的方程;
(Ⅱ)求過點M(3,1)的圓C的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若cos($\frac{π}{2}+α$)=$\frac{3}{5}$,則cos2α=( 。
A.$-\frac{7}{25}$B.$\frac{7}{25}$C.一$\frac{16}{25}$D.$\frac{16}{25}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在三棱柱ABC-A1B1C1中,CA=CB,側面ABB1A1是邊長為2的正方形,點E,F(xiàn)分別在線段AAl,A1B1上,且AE=$\frac{1}{2}$,A1F=$\frac{3}{4}$,CE⊥EF,M為AB中點
( I)證明:EF⊥平面CME;
(Ⅱ)若CA⊥CB,求直線AC1與平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.閱讀如圖的程序框圖,運行相應的程序,則輸出的值為(  )
A.3B.4C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=|x-a|+|2x-1|.
(Ⅰ)當a=1時,解不等式f(x)≥2;
(Ⅱ)求證:$f(x)≥|a-\frac{1}{2}|$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)=ex+$\frac{2x-5}{{x}^{2}+1}$的圖象在點(0,f(0))處的切線與直線x-my+4=0垂直,則實數(shù)m的值為(  )
A.-3B.3C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

同步練習冊答案