14.方程xy2+x2y=1所表示的曲線( 。
A.關于x軸對稱B.關于y軸對稱C.關于原點對稱D.關于直線y=x對稱

分析 根據(jù)對稱的性質(zhì),將方程中的x換為y,y換為x,看方程是否與原方程相同.

解答 解:將方程中的x換為y,y換為x方程變?yōu)閤y2+x2y=1與原方程相同,故曲線關于直線y=x對稱,
故選D.

點評 本題考查點(x,y)關于x軸的對稱點為(x,-y);關于y軸的對稱點為(-x,y);關于原點的對稱點為(-x,-y);關于y=-x的對稱點為(-y,-x).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

12.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x-y-1≤0\\ x+3≥0\\ y-2≤0\end{array}\right.$,則$\frac{y-2}{x-4}$的最大值為$\frac{6}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設函數(shù)$f(x)=4cos(x-\frac{π}{6})sinx-2cos(2x+π)$,則函數(shù)f(x)的最大值和最小值分別為( 。
A.13和-11B.8和-6C.1和-3D.3和-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.設△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且$\frac{π}{4}$$<B<\frac{π}{2}$,acosB-bcosA=$\frac{3}{5}$c,則tan2B•tan3A的最大值為-512.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知a>0,則${∫}_{-a}^{a}$(xcosx-5sinx+2)dx=4a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.一個正三棱柱的側(cè)棱長和底面邊長都相等,它的俯視圖如圖所示,左視圖是一個矩形,棱柱的體積為2$\sqrt{3}$,則這個三棱柱的表面積為(  )
A.2$\sqrt{3}$B.12C.2$\sqrt{3}$+12D.2$\sqrt{3}$+6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知ξ的分布列如圖,Eξ=7.5,則a=(  )
ξ 4a910
P 0.30.1b0.2
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.如圖,正方體ABCD-A1B1C1D1的棱上到AB,CC1的距離相等的所有點的個數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.為打擊索馬里海盜,保護各國商船的順利通行,我海軍某部奉命前往該海域執(zhí)行護航任務,某天我護航艦正在某小島A北偏西45°并距該島20海里的B處待命,位于該島正西方向C處的某外國商船遭到海盜襲擊,船長發(fā)現(xiàn)在其北偏東60°的方向有我軍護航艦(如圖所示),便發(fā)出緊急求救信號,我護航艦接警后,立即沿BC航線以每小時60海里的速度前去救援,問我護航艦需多少分鐘可以到達該商船所在的位置C處?(結(jié)果精確到個位,參考數(shù)據(jù):$\sqrt{2}$≈1.4,$\sqrt{3}$≈1.7)

查看答案和解析>>

同步練習冊答案