20.閱讀下面的程序框圖,運(yùn)行相應(yīng)的程序,輸出的結(jié)果為( 。
A.$\frac{21}{13}$B.$\frac{13}{8}$C.$\frac{34}{21}$D.$\frac{8}{5}$

分析 分析程序中各變量、各語(yǔ)句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)計(jì)算變量x,y的值,最后輸出$\frac{y}{x}$的值,模擬程序的運(yùn)行,用表格對(duì)程序運(yùn)行過(guò)程中各變量的值進(jìn)行分析,不難得到輸出結(jié)果.

解答 解:程序在運(yùn)行過(guò)程中各變量的值如下表示:
是否繼續(xù)循環(huán) x y z
循環(huán)前 1 1 2
第一圈 是 1 2 3
第二圈 是 2 3 5
第三圈 是 3 5 8
第四圈 是 5 8 13
第五圈 是 8 13 21
第六圈 是 13 21 34
第七圈 否
此時(shí)$\frac{y}{x}=\frac{21}{13}$.
故選A.

點(diǎn)評(píng) 根據(jù)流程圖(或偽代碼)寫程序的運(yùn)行結(jié)果,是算法這一模塊最重要的題型,其處理方法是::①分析流程圖(或偽代碼),從流程圖(或偽代碼)中即要分析出計(jì)算的類型,又要分析出參與計(jì)算的數(shù)據(jù)(如果參與運(yùn)算的數(shù)據(jù)比較多,也可使用表格對(duì)數(shù)據(jù)進(jìn)行分析管理)⇒②建立數(shù)學(xué)模型,根據(jù)第一步分析的結(jié)果,選擇恰當(dāng)?shù)臄?shù)學(xué)模型③解模.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知一個(gè)正倒立的圓錐容器中裝有一定的水,現(xiàn)放入一個(gè)小球后,水面恰好淹過(guò)小球(水面與小球相切),且圓錐的軸截面是等邊三角形,則容器中水的體積與小球的體積之比為5:4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列四個(gè)說(shuō)法:
(1)函數(shù)f(x)=$\frac{1}{x}$的減區(qū)間為(-∞,0)∪(0,+∞)
(2)M={x|x-a=0},N={x|ax-1=0},若M∩N=N,則實(shí)數(shù)a的值為1或-1;
(3)y=x2-2|x|-3的遞增區(qū)間為[1,+∞);
(4)集合A={x|-1≤x≤7},B={x|k+1≤x≤2k-1},則能使A∪B=A的實(shí)數(shù)k的取值范圍為(-∞,4].
其中說(shuō)法正確的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知R上的不間斷函數(shù)g(x)滿足:
①當(dāng)x>0時(shí),g'(x)>0恒成立;
②對(duì)任意的x∈R都有g(shù)(x)=g(-x).
又函數(shù)f(x)滿足:對(duì)任意的x∈R,都有f($\sqrt{3}$+x)=-f(x)成立,當(dāng)x∈[0,$\sqrt{3}$]時(shí),f(x)=x3-3x.
若關(guān)于x的不等式g[f(x)]≤g(a2-a+2),對(duì)于x∈[2-3$\sqrt{3}$,2+3$\sqrt{3}$]恒成立,則a的取值范圍為(-∞,0]∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$(m+1)x2+2(m-1)x在(0,4)上無(wú)極值,則m=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.正項(xiàng)數(shù)列{an}的前n項(xiàng)和Sn滿足Sn2-(n2+n-1)Sn-(n2+n)=0;
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)令bn=$\frac{1}{{(n+2){a_n}}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,證明:對(duì)于任意的n∈N*,都有Tn<$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)A={x|x2-x-6=0},B={x|x2+3x+2=0}.
(1)用列舉法表示集合A,B;
(2)求A∩B,A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,滿足4Sn=an+12-4n-4,n∈N*,且a2,a4,a8構(gòu)成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=an+$\frac{1}{{2}^{{a}_{n}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)$f(x)=\frac{1}{{1+{x^2}}}$,則$f(2016)+f(2015)+…+f(2)+f(\frac{1}{2})+…+f(\frac{1}{2015})$$+f(\frac{1}{2016})$的值為( 。
A.2014B.2015C.2016D.2017

查看答案和解析>>

同步練習(xí)冊(cè)答案