【題目】根據(jù)某省的高考改革方案,考生應(yīng)在3門理科學(xué)科(物理、化學(xué)、生物)和3門文科學(xué)科(歷史、政治、地理)的6門學(xué)科中選擇3門學(xué)科參加考試.根據(jù)以往統(tǒng)計(jì)資料,1位同學(xué)選擇生物的概率為0.5,選擇物理但不選擇生物的概率為0.2,考生選擇各門學(xué)科是相互獨(dú)立的.

1)求1位考生至少選擇生物、物理兩門學(xué)科中的1門的概率;

2)某校高二段400名學(xué)生中,選擇生物但不選擇物理的人數(shù)為140,求1位考生同時(shí)選擇生物、物理兩門學(xué)科的概率.

【答案】(1)(2)

【解析】

1)根據(jù)獨(dú)立事件概率的加法,即可求得至少選擇生物、物理兩門學(xué)科中的1門的概率;

2)根據(jù)學(xué)生統(tǒng)計(jì)人數(shù),先求得選擇生物但不選擇物理的人數(shù)的概率.再根據(jù)互斥概率的計(jì)算即可求得同時(shí)選擇生物、物理兩門學(xué)科的概率.

表示事件:考生選擇生物學(xué)科

表示事件:考生選擇物理但不選擇生物學(xué)科;

表示事件:考生至少選擇生物、物理兩門學(xué)科中的1門學(xué)科;

表示事件:選擇生物但不選擇物理

表示事件:同時(shí)選擇生物、物理兩門學(xué)科

1,,,

2)由某校高二段400名學(xué)生中,選擇生物但不選擇物理的人數(shù)為140,

可知

因?yàn)?/span>

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F為拋物線的焦點(diǎn),過F的動(dòng)直線交拋物線CA,B兩點(diǎn).當(dāng)直線與x軸垂直時(shí),.

1)求拋物線C的方程;

2)若直線AB與拋物線的準(zhǔn)線l相交于點(diǎn)M,在拋物線C上是否存在點(diǎn)P,使得直線PA,PM,PB的斜率成等差數(shù)列?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面,,點(diǎn)分別為的中點(diǎn).

(Ⅰ)求證:平面

(Ⅱ)求二面角的正弦值;

(Ⅲ)若為線段上的點(diǎn),且直線與平面所成的角為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)經(jīng)過點(diǎn)的直線與拋物線相交于兩點(diǎn),經(jīng)過點(diǎn)的直線與拋物線相切于點(diǎn).

1)當(dāng)時(shí),求的取值范圍;

2)問是否存在直線,使得成立,若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:若數(shù)列滿足所有的項(xiàng)均由,1構(gòu)成且其中個(gè),1個(gè),則稱為“數(shù)列”.

1,為“數(shù)列”中的任意三項(xiàng),則使得的取法有多少種?

2,,為“數(shù)列”中的任意三項(xiàng),則存在多少正整數(shù)對(duì)使得,且的概率為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,已知,頂點(diǎn)P在平面ABC上的射影為的外接圓圓心.

1)證明:平面平面ABC

2)若點(diǎn)M在棱PA上,,且二面角P-BC-M的余弦值為,試求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B為橢圓C短軸的上、下頂點(diǎn),P為直線ly2上一動(dòng)點(diǎn),連接PA并延長交橢圓于點(diǎn)M,連接PB交橢圓于點(diǎn)N,已知直線MA,MB的斜率之積恒為.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)若直線MNx軸平行,求直線MN的方程;

3)求四邊形AMBN面積的最大值,并求對(duì)應(yīng)的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),的最大值為.

1)求的值;

2)試推斷方程是否有實(shí)數(shù)解?若有實(shí)數(shù)解,請(qǐng)求出它的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】科赫曲線是一種外形像雪花的幾何曲線,一段科赫曲線可以通過下列操作步驟構(gòu)造得到,任畫一條線段,然后把它均分成三等分,以中間一段為邊向外作正三角形,并把中間一段去掉,這樣,原來的一條線段就變成了4條小線段構(gòu)成的折線,稱為“一次構(gòu)造”;用同樣的方法把每條小線段重復(fù)上述步驟,得到16條更小的線段構(gòu)成的折線,稱為“二次構(gòu)造”,…,如此進(jìn)行“次構(gòu)造”,就可以得到一條科赫曲線.若要在構(gòu)造過程中使得到的折線的長度達(dá)到初始線段的1000倍,則至少需要通過構(gòu)造的次數(shù)是( .(取

A.16B.17C.24D.25

查看答案和解析>>

同步練習(xí)冊(cè)答案