在△ABC中,已知a、b、c分別為∠A,∠B,∠C所對的邊,S為△ABC的面積,若向量
p
=(4,a2+b2-c2),
q
=(1,S)滿足
p
q
,則∠C=( 。
A、
π
4
B、
π
3
C、
π
2
D、
4
考點(diǎn):平面向量共線(平行)的坐標(biāo)表示
專題:平面向量及應(yīng)用
分析:根據(jù)向量平行的坐標(biāo)公式,建立條件關(guān)系,利用余弦定理和三角形的面積公式即可得到結(jié)論.
解答: 解:∵向量
p
=(4,a2+b2-c2),
q
=(1,S)滿足
p
q
,
∴a2+b2-c2-4S=0,
即4S=a2+b2-c2
則4×
1
2
absinC=a2+b2-c2,
即sinC=
a2+b2-c2
2ab
=cosC,
則tanC=1,解得C=
π
4
,
故選:A.
點(diǎn)評:本題主要考查平面向量的應(yīng)用,以及余弦定理和三角形面積的計算,要求熟練掌握相應(yīng)的公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+
1
2
ax2+bx+c的兩個極值點(diǎn)分別為x1和x2,有f(x1)=x2,f(x2)=x1,其中x1≠x2,則函數(shù)g(x)=f2(x)+af(x)+b的零點(diǎn)個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等比數(shù)列{an}的前n項(xiàng)和Sn=2•3n-2+a,等差數(shù)列{bn}的前n項(xiàng)和Tn=2n2-n+b,則a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、
11
3
6
B、
3
C、
5
3
3
D、
4
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

程序框圖的運(yùn)算結(jié)果為( 。
A、12B、24C、16D、48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=|x+2|+|x-4|的最小值為n,則二項(xiàng)式(x-
1
x
n展開式中x2項(xiàng)的系數(shù)為( 。
A、30B、-15
C、15D、-30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角φ的終邊經(jīng)過點(diǎn)P(3,-4),函數(shù)f(x)=sin(ωx+φ)(ω>0)的圖象的相鄰的兩條對稱軸之間的距離等于
π
3
,則f(
π
12
)的值為( 。
A、
2
10
B、-
2
10
C、
7
2
10
D、-
7
2
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)Z滿足(3,-4i)Z=|4+3i|,則Z的共軛復(fù)數(shù)的虛部為(  )
A、4
B、
4
5
C、-4
D、-
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果兩個方程的曲線經(jīng)過若干次平移或?qū)ΨQ變換后能夠完全重合,則稱這兩個方程為“互為生成方程對”.給出下列四對方程:
①y=sinx+cosx和y=
2
sinx+1;
②y2-x2=2和x2-y2=2;
③y2=4x和x2=4y;
④y=ln(x-1)和y=ex+1.
其中是“互為生成方程對”有( 。
A、1對B、2對C、3對D、4對

查看答案和解析>>

同步練習(xí)冊答案