已知在長方體ABCD-A′B′C′D′中,點E為棱CC′上任意一點,AB=BC=2,CC′=1.
(Ⅰ)求證:平面ACC′A′⊥平面BDE;
(Ⅱ)若點P為棱C′D′的中點,點E為棱CC′的中點,求二面角P-BD-E的余弦值.
(Ⅰ)∵四邊形ABCD為正方形,∴AC⊥BD,
∵CC'⊥平面ABCD,BD?平面ABCD,∴BD⊥CC'.
又∵CC'∩AC=C,∴BD⊥平面ACC'A'.
∵BD?平面BDE,
∴平面BDE⊥平面ACC'A',即平面ACC′A′⊥平面BDE;
(Ⅱ)建立分別以DA、DC、DD'為x軸、y軸和z軸,建立空間直角坐標系,如圖所示.
可得D(0,0,0),B(2,2,0),E(0,2,
1
2
),P(0,1,1).
設(shè)平面BDE的一個法向量為
m
=(x,y,z)
,
DB
=(2,2,0),
DE
=(0,2,
1
2
)
,
m
DB
=2x+2y=0
m
DE
=2y+
1
2
z=0
,取x=1,得y=-1且z=4.
可得
m
=(1,-1,4)
;
設(shè)平面PBD的一個法向量為
n
=(m,n,p)
,
DP
=(0,1,1)
,∴
n
DB
=2m+2n=0
n
DP
=n+p=0

取m=1,得n=-1且p=1,可得
n
=(1,-1,1)

cos<
m
,
n
>=
m
n
|
m
|•|
n
|
=
6
3
,且二面角P-BD-E是銳二面角,
∴二面角P-BD-E的余弦值為
6
3
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

在長方體ABCD-A1B1C1D1中,AB=2,BC=2,DD1=2
2
,則AC1與面BDD1所成角的大小是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD是邊長為1的菱形,∠ABC=
π
4
,PA⊥底面ABCD,PA=2,M為PA的中點,N為BC的中點.AF⊥CD于F,如圖建立空間直角坐標系.
(Ⅰ)求出平面PCD的一個法向量并證明MN平面PCD;
(Ⅱ)求二面角P-CD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在長方體ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2.E、F分別是線段AB、BC上的點,且EB=FB=1.
( I)求二面角C-DE-C1的正切值;( II)求直線EC1與FD1所成的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,ABCD是邊長為2的正方形,DE⊥平面ABCD,AFDE,DE=3AF=3.
(1)求證:AC⊥平面BDE;
(2)求直線AB與平面BEF所成的角的正弦值;
(3)線段BD上是否存在點M,使得AM平面BEF?若存在,試確定點M的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分別為AB、AC中點.
(1)求證:DE平面PBC;
(2)求證:AB⊥PE;
(3)求二面角A-PB-E的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

一個多面體的直觀圖及三視圖分別如圖1和圖2所示(其中正視圖和側(cè)視圖均為矩形,俯視圖是直角三角形),M、N分別是AB1、A1C1的中點,MN⊥AB1


(Ⅰ)求實數(shù)a的值并證明MN平面BCC1B1
(Ⅱ)在上面結(jié)論下,求平面AB1C1與平面ABC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知兩個非零向量a與b,定義|a×b|=|a|·|b|sin θ,其中θ為a與b的夾角.若a=(-3,4),b=(0,2),則|a×b|的值為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列關(guān)于向量的命題,正確的是(  )
A.零向量是長度為零,且沒有方向的向量
B.若=﹣2(a≠0),則是的相反向量
C.若=﹣2,則||=2||
D.在同一平面上,單位向量有且僅有一個

查看答案和解析>>

同步練習冊答案