已知函數(shù)f(x)=log2(2x+1)
(1)求證:函數(shù)f(x)在(-∞,+∞)內(nèi)單調(diào)遞增;
(2)記f-1(x)為函數(shù)f(x)的反函數(shù),關(guān)于x的方程f-1(x)=m+f(x)在[1,2]上有解,求m的取值范圍.
分析:(1)用單調(diào)性定義證明,先任取兩個變量,且界定大小,再作差變形,通過分析,與零比較,要注意變形要到位.
(2)先求得反函數(shù)f-1(x)=log2(2x-1)(x>0),構(gòu)造函數(shù)m=f-1(x)-f(x)=log2(2x-1)-log2(2x+1)=log2
2x-1
2x+1
=log2(1-
2
2x+1
)
利用復(fù)合函數(shù)的單調(diào)性求得函數(shù)的值域.
解答:解:(1)任取x1<x2,則f(x1)-f(x2)=log2(2x1+1)-log2(2x2+1)=log2
2x1+1
2x2+1
,
∵x1<x2,∴0<2x1+1<2x2+1,
0<
2x1+1
2x2+1
<1,log2
2x1+1
2x2+1
<0
,
∴f(x1)<f(x2),
即函數(shù)f(x)在(-∞,+∞)內(nèi)單調(diào)遞增

(2)∵f-1(x)=log2(2x-1)(x>0),
∴m=f-1(x)-f(x)=log2(2x-1)-log2(2x+1)=log2
2x-1
2x+1
=log2(1-
2
2x+1
)

當(dāng)1≤x≤2時,
2
5
2
2x+1
2
3
,
1
3
≤1-
2
2x+1
3
5

∴m的取值范圍是[log2(
1
3
),log2(
3
5
)]
點評:本題主要考查函數(shù)與方程的綜合運(yùn)用,主要涉及了用單調(diào)性的定義證明函數(shù)的單調(diào)性以及構(gòu)造函數(shù)研究函數(shù)的性質(zhì)等問題,還考查了轉(zhuǎn)化思想和構(gòu)造轉(zhuǎn)化函數(shù)的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當(dāng)a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時,函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案