若函數(shù)f(x)=x3+ax2+bx+c在R上有三個零點,且同時滿足:
①f(1)=0;
②f(x)在x=0處取得極大值;
③f(x)在區(qū)間(0,1)上是減函數(shù).
(Ⅰ)當(dāng)a=-2時,求y=f(x)在點(2,f(2))處的切線方程;
(Ⅱ)若g(x)=1-x,且關(guān)于x的不等式f(x)≥g(x)的解集為[1,+∞),求實數(shù)a的取值范圍.
由f(1)=0得:1+a+b+c=0,f'(x)=3x2+2ax+b.
因為f(x)在x=0處取得極大值,所以 f'(0)=0,即b=0.
因為f(x)在區(qū)間(0,1)上是減函數(shù),則f'(1)≤0,所以 3+2a≤0,所以 a≤-
3
2

(Ⅰ) 當(dāng)a=-2時,f'(x)=3x2-4x,所以 f'(2)=4
由a=-2,b=0,1+a+b+c=0,所以 c=1
所以 f(x)=x3-2x2+1,則點(2,f(2))為(2,1),
所以切線方程為:y-1=4(x-2),即y=4x-7.
(Ⅱ) f(x)-g(x)=x3+ax2-1-a-1+x=x3+ax2+x-a-2,f(1)-g(1)=1+a+1-a-2=0
x3+ax2+x-a-2=(x-1)(x2+x+2)+a(x-1)(x+1)
=(x-1)[x2+(1+a)x+(a+2)]

要使f(x)≥g(x)的解集為[1,+∞),必須x2+(1+a)x+(a+2)≥0恒成立
所以,△=(1+a)2-4(a+2)<0(1),或
(1+a)2-4(a+2)≥0
-
1+a
2
≤1
f(1)=2a+4≥0
(2)
解得:(1)得1-2
2
<a<1+2
2
,解(2)得-2≤a≤1-2
2

又∵a≤-
3
2
,∴-2≤a≤-
3
2

所以使不等式f(x)≥g(x)的解集為[1,+∞)的實數(shù)a的取值范圍是[-2,-
3
2
].
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3+
1
x
,則
 
lim
△x→0
f(△x-1)+f(1)
2△x
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3+3x-1,x∈[-1,l],則下列判斷正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3+3mx2+nx+m2為奇函數(shù),則實數(shù)m的值為
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3-3bx+b在區(qū)間(0,1)內(nèi)有極小值,則b的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3-3x+1在閉區(qū)間[-3,0]上的最大值,最小值分別為M,m,則M+m=
-14
-14

查看答案和解析>>

同步練習(xí)冊答案