【題目】屠呦呦,第一位獲得諾貝爾科學獎項的中國本土科學家,在2015年獲得諾貝爾生理學或醫(yī)學獎,理由是她發(fā)現(xiàn)了青蒿素.這種藥品可以有效降低瘧疾患者的死亡率,從青篙中提取的青篙素抗瘧性超強,幾乎達到100%.據(jù)監(jiān)測:服藥后每毫升血液中的含藥量y(微克)與時間t(小時)之間近似滿足如圖所示的曲線.

(Ⅰ)寫出服藥一次后yt之間的函數(shù)關系式;

(Ⅱ)據(jù)進一步測定:每毫升血液中含藥量不少于微克時,治療有效,求服藥一次后治療有效的時間是多長?

【答案】(Ⅰ)(Ⅱ)

【解析】

(Ⅰ)由題意,根據(jù)一次函數(shù)和指數(shù)函數(shù)的解析式,結(jié)合圖象,即可得到函數(shù)的解析式;

(Ⅱ)當時,求得,當時,求得,即可得到服藥一次后治療有效的時間,得到答案。

(Ⅰ)由題意,可得當時,函數(shù)滿足,當時,函數(shù)滿足,

所以函數(shù)的解析式為

(Ⅱ)

,所以

服藥一次后治療有效時間是小時。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當時,證明:對任意的.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某年級的聯(lián)歡會上設計了一個摸獎游戲,在一個口袋中裝有3個紅球和7個白球,這些球除顏色外完全相同,一次從中摸出3個球.

(1)設表示摸出的紅球的個數(shù),求的分布列和數(shù)學期望;

(2)為了提高同學們參與游戲的積極性,參加游戲的同學每人可摸球兩次,每次摸球后放回,若規(guī)定兩次共摸出紅球的個數(shù)不少于,且中獎概率大于60%時,即中獎,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 有極值,且函數(shù)的極值點是的極值點,其中是自然對數(shù)的底數(shù).(極值點是指函數(shù)取得極值時對應的自變量的值)

(1)求關于的函數(shù)關系式;

(2)當時,若函數(shù)的最小值為,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, , 兩兩垂直, ,且, .

(1)求二面角的余弦值;

(2)已知點為線段上異于的點,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于區(qū)間[a,b](a<b),若函數(shù)同時滿足:①在[a,b]上是單調(diào)函數(shù),②函數(shù)在[a,b]的值域是[a,b],則稱區(qū)間[a,b]為函數(shù)的“保值”區(qū)間

(1)求函數(shù)的所有“保值”區(qū)間

(2)函數(shù)是否存在“保值”區(qū)間?若存在,求的取值范圍,若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中,真命題是( )

A. ,則為實數(shù)的充要條件是為共軛復數(shù);

B. “直線與曲線C相切”是“直線與曲線C只有一個公共點”的充分不必要條件;

C. “若兩直線,則它們的斜率之積等于”的逆命題;

D. 是R上的可導函數(shù),“若的極值點,則”的否命題.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,⊥平面,底面為梯形,, ,,,的中點

Ⅰ)證明:∥平面;

(Ⅱ)求直線與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】青少年“心理健康”問題越來越引起社會關注,某校對高一600名學生進行了一次“心理健康”知識測試,并從中抽取了部分學生的成績(得分取正整數(shù),滿分100分)作為樣本,繪制了下面尚未完成的頻率分布表和頻率分布直方圖。

分組

頻數(shù)

頻率

[50,60)

2

0.04

[60,70)

8

0.16

[70,80)

10

[80,90)

[90,100]

14

0.28

合計

1.00

                                                             

(1)填寫答題卡頻率分布表中的空格,補全頻率分布直方圖,并標出每個小矩形對應的縱軸數(shù)據(jù);

(2)請你估算學生成績的平均數(shù)及中位數(shù)。

查看答案和解析>>

同步練習冊答案