【題目】若函數f(x)是偶函數,且在(﹣∞,0]上是增函數,又f(2)=0,則xf(x)>0的解集是( )
A.(﹣2,2)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣2,0]∪(2,+∞)
科目:高中數學 來源: 題型:
【題目】設過原點 O 的直線與圓 C : 的一個交點為 P ,點 M 為線段 OP 的中點。
(1)求圓 C 的極坐標方程;
(2)求點 M 軌跡的極坐標方程,并說明它是什么曲線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:x2+y2+2x+a=0上存在兩點關于直線l:mx+y+1=0對稱. (Ⅰ)求m的值;
(Ⅱ)直線l與圓C交于A,B兩點, =﹣3(O為坐標原點),求圓C的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ,其中a>0,且函數f(x)的最大值是
(1)求實數a的值;
(2)若函數g(x)=lnf(x)﹣b有兩個零點,求實數b的取值范圍;
(3)若對任意的x∈(0,2),都有f(x)< 成立,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的函數f(x)= (a∈R)是奇函數,函數g(x)= 的定義域為(﹣1,+∞).
(1)求a的值;
(2)若g(x)= 在(﹣1,+∞)上遞減,根據單調性的定義求實數m的取值范圍;
(3)在(2)的條件下,若函數h(x)=f(x)+g(x)在區(qū)間(﹣1,1)上有且僅有兩個不同的零點,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)為奇函數,當x≥0時,f(x)= .g(x)= ,
(1)求當x<0時,函數f(x)的解析式;
(2)求g(x)的解析式,并證明g(x)的奇偶性.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市為了了解今年高中畢業(yè)生的體能狀況,從本市某校高中畢業(yè)班中抽取一個班進行鉛球測試,成績在8.0米(精確到0.1米)以上的為合格.把所得數據進行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個小組的頻率分別為0.04,0.10,0.14,0.28,0.30.第6小組的頻數是7.
(1)求這次鉛球測試成績合格的人數;
(2)若由直方圖來估計這組數據的中位數,指出它在第幾組內,并說明理由;
(3)若參加此次測試的學生中,有9人的成績?yōu)閮?yōu)秀,現在要從成績優(yōu)秀的學生中,隨機選出2人參加“畢業(yè)運動會”,已知a、b的成績均為優(yōu)秀,求兩人至少有1人入選的概率。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com