分析 (Ⅰ)由已知得an+1-an=an2-2an+1=(an-1)2≥0,a1=2,由此能證明an+1>an.
(Ⅱ)由${a_{n+1}}={a_n}^2-{a_n}+1$,得:an+1-1=an(an-1),由此利用累乘法得an+1=anan-1…a2a1+1,從而$\frac{1}{a_n}=\frac{1}{{{a_n}-1}}-\frac{1}{{{a_{n+1}}-1}}$,進而能證明1-$\frac{1}{{{2^{2015}}}}<\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2015}}}}$<1.
解答 證明:(Ⅰ)∵a1=2,an+1=an2-an+1,n∈N*,
∴an+1-an=an2-2an+1=(an-1)2≥0,a1=2>1,
∴由歸納法可知an+1>an…..(4分)
(Ⅱ)由${a_{n+1}}={a_n}^2-{a_n}+1$,得:an+1-1=an(an-1),
∴an-1=an-1(an-1-1)
…a2-1=a1(a1-1)
以上各式兩邊分別相乘得:
an+1-1=anan-1…a2a1(a1-1),
又a1=2,∴an+1=anan-1…a2a1+1…..(7分)
又∵an+1-1=an(an-1),
∴$\frac{1}{{{a_{n+1}}-1}}=\frac{1}{{{a_n}-1}}-\frac{1}{a_n}$,
∴$\frac{1}{a_n}=\frac{1}{{{a_n}-1}}-\frac{1}{{{a_{n+1}}-1}}$,
∴$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2015}}}}$=$(\frac{1}{{{a_1}-1}}-\frac{1}{{{a_2}-1}})+(\frac{1}{{{a_2}-1}}-\frac{1}{{{a_3}-1}})+…+(\frac{1}{{{a_{2015}}-1}}-\frac{1}{{{a_{2016}}-1}})$=$\frac{1}{{{a_1}-1}}-\frac{1}{{{a_{2016}}-1}}$=$1-\frac{1}{{{a_1}{a_{2…}}{a_{2015}}}}$<1
又${a_1}{a_2}…{a_{2015}}>{a_1}^{2015}={2^{2015}}$,
∴$1-\frac{1}{{{a_1}{a_2}…{a_{2015}}}}>1-\frac{1}{{{2^{2015}}}}$,
∴1-$\frac{1}{{{2^{2015}}}}<\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2015}}}}$<1. …..(15分)
點評 本題考查不等式的證明,是中檔題,解題時要認真審題,注意歸納法、累乘法、裂項法的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | -1 | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,+∞) | B. | (-∞,0] | C. | (-∞,0) | D. | (0,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 關于直線x=$\frac{π}{12}$對稱 | B. | 關于直線x=$\frac{5π}{12}$對稱 | ||
C. | 關于點($\frac{π}{12}$,0)對稱 | D. | 關于點($\frac{5π}{12}$,0)對稱 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,1) | B. | (-2,1) | C. | (1,4) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=x3 | B. | y=2|x| | C. | y=-x2+1 | D. | y=$\frac{1}{x^2}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com