若A,B,C不共線,對于空間任意一點O都有
OP
=
3
4
OA
+
1
8
OB
+
1
8
OC
,則P,A,B,C四點( 。
A、不共面B、共面
C、共線D、不共線
考點:平面向量的基本定理及其意義
專題:平面向量及應(yīng)用
分析:由共面向量基本定理即可得出.
解答: 解::由
OP
=
3
4
OA
+
1
8
OB
+
1
8
OC
,可得
3
4
+
1
8
+
1
8
=1,
又A,B,C不共線,∴P,A,B,C四點共面.
故選:B.
點評:本題考查了共面向量基本定理,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某種產(chǎn)品的支出廣告額x與利潤額y(單位:萬元)之間有如下對應(yīng)數(shù)據(jù):
x34567
y2030304060
則回歸直線方程必過( 。
A、(5,30 )
B、(4,30)
C、(5,35)
D、(5,36)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,且a>b,則下列不等式中恒成立的是( 。
A、ab>a+b
B、(
1
2
a<(
1
2
b
C、lg(a-b)>0
D、
a
b
>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
5
i-2
(i為虛數(shù)單位)的共軛復(fù)數(shù)為( 。
A、i-2B、i+2
C、2-iD、-2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一段演繹推理是這樣的:“對數(shù)函數(shù)都是減函數(shù);因為y=lnx是對數(shù)函數(shù);所以y=lnx是減函數(shù)”,結(jié)論顯然是錯誤的,這是因為( 。
A、推理形式錯誤
B、小前提錯誤
C、大前提錯誤
D、非以上錯誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某賽季甲乙兩名運動員上場比賽得分莖葉圖如圖所示,則他們的中位數(shù)分別是( 。
A、36,33
B、33.5,24.5
C、38,36
D、37,36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法,不正確的是( 。
①數(shù)據(jù)4、6、6、7、9、4的眾數(shù)是4;
②平均數(shù)、眾數(shù)與中位數(shù)從不同的角度描述了一組數(shù)據(jù)的集中趨勢;
③平均數(shù)是頻率分布直方圖的“重心”;
④頻率分布直方圖中各小長方形的面積等于相應(yīng)各組的頻數(shù).
A、①②③B、②③
C、①④D、①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)男生1250名中有420名近視,女生1210名中有370名近視,在檢驗這些中學(xué)生眼睛近視是否與性別有關(guān)時用什么方法最有說服力( 。
A、期望與方差B、排列與組合
C、獨立性檢驗D、概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知4盒中有3個紅球,x個黑球(不少于紅球個數(shù)),B盒中有y個紅球,4個黑球.若分別從兩個盒子中各取一個球都是紅球的概率為
3
10
,都是黑球的概率為
1
5

(Ⅰ)求x,y的值;
(Ⅱ)如果從A,B中各取2個球,其中紅球的個數(shù)為ξ.求隨機變量ξ的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案