【題目】設(shè)十人各拿一只水桶,同到水龍頭前打水,設(shè)水龍頭注滿第i(i=1,2,…,10)個人的水桶需Ti分鐘,假設(shè)Ti各不相同,當(dāng)水龍頭只有一個可用時,應(yīng)如何安排他()們的接水次序,使他()們的總的花費時間(包括等待時間和自己接水所花費的時間)最少(  )

A. Ti中最大的開始,按由大到小的順序排隊

B. Ti中最小的開始,按由小到大的順序排隊

C. 從靠近Ti平均數(shù)的一個開始,依次按取一個小的取一個大的的擺動順序排隊

D. 任意順序排隊接水的總時間都不變

【答案】B

【解析】

表示出拎小桶者先接水時等候的時間,然后加上拎大桶者一共等候者用的時間,用(2m+2T+t)減去二者的和就是節(jié)省的時間;由此可推廣到一般結(jié)論

事實上,只要不按從小到大的順序排隊,就至少有緊挨著的兩個人拎著大桶者排在拎小桶者之前,仍設(shè)大桶接滿水需要T分鐘,小桶接滿水需要t分鐘,并設(shè)拎大桶者開始接水時已等候了m分鐘,這樣拎大桶者接滿水一共等候了(m+T)分鐘,拎小桶者一共等候了(m+T+t)分鐘,兩人一共等候了(2m+2T+t)分鐘,在其他人位置不變的前提下,讓這兩個人交還位置,即局部調(diào)整這兩個人的位置,同樣介意計算兩個人接滿水共等候了

2m+2t+T

分鐘,共節(jié)省了 T-t

分鐘,而其他人等候的時間未變,這說明只要存在有緊挨著的兩個人是拎大桶者在拎小桶者之前都可以這樣調(diào)整,從而使得總等候時間減少.這樣經(jīng)過一系列調(diào)整后,整個隊伍都是從小打到排列,就打到最優(yōu)狀態(tài),總的排隊時間就最短.

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的定義域D,并判斷的奇偶性;

2)如果當(dāng)時,的值域是,求a的值;

3)對任意的m,,是否存在,使得,若存在,求出t,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),

(1)當(dāng)時,求上的最大值和最小值;

(2)當(dāng)時,過點作函數(shù)的圖象的切線,求切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,橢圓的短半軸長等于圓的半徑,且過右焦點的直線與圓相切于點

1)求橢圓的方程;

2)若動直線與圓相切,且與相交于兩點,求點到弦的垂直平分線距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,上海迪士尼樂園將一三角形地塊的一角開辟為游客體驗活動區(qū),已知,的長度均大于米,設(shè),,且、總長度為.

1)當(dāng)為何值時,游客體驗活動區(qū)的面積最大,并求最大面積?

2)當(dāng)、為何值時,線段最小,并求最小值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,是一塊邊長為7米的正方形鐵皮,其中是一半徑為6米的扇形,已經(jīng)被腐蝕不能使用,其余部分完好可利用.工人師傅想在未被腐蝕部分截下一個有邊落在BCCD上的長方形鐵皮,其中P上一點.設(shè),長方形的面積為S平方米.

1)求S關(guān)于的函數(shù)解析式;

2)設(shè),求S關(guān)于t的表達式以及S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓M經(jīng)過定點,且與直線相切.

1)求動圓M的圓心的軌跡方程曲線C;

2)設(shè)直線l與曲線C相交于M,N兩點,且滿足,的面積為8,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個無窮數(shù)列的前項和分別為,,,對任意的,都有.

1)求數(shù)列的通項公式;

2)若為等差數(shù)列,對任意的,都有,證明:;

3)若為等比數(shù)列,,,求滿足)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費對年銷售量(單位:t)的影響.該公司對近5年的年宣傳費和年銷售量數(shù)據(jù)進行了研究,發(fā)現(xiàn)年宣傳費x(萬元)和年銷售量y(單位:t)具有線性相關(guān)關(guān)系,并對數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計量的值.

(1)根據(jù)表中數(shù)據(jù)建立年銷售量y關(guān)于年宣傳費x的回歸方程;

(2)已知這種產(chǎn)品的年利潤zx,y的關(guān)系為,根據(jù)(1)中的結(jié)果回答下列問題:

①當(dāng)年宣傳費為10萬元時,年銷售量及年利潤的預(yù)報值是多少?

②估算該公司應(yīng)該投入多少宣傳費,才能使得年利潤與年宣傳費的比值最大.

附:回歸方程中的斜率和截距的最小二乘估計公式分別為

參考數(shù)據(jù):.

查看答案和解析>>

同步練習(xí)冊答案