(2012•西城區(qū)二模)已知函數(shù)f(x)=kx+1,其中實數(shù)k隨機選自區(qū)間[-2,1].對?x∈[0,1],f(x)≥0的概率是( 。
分析:由題意知本題是一個幾何概型,概率的值對應(yīng)長度之比,根據(jù)題目中所給的條件可求k的范圍,區(qū)間的長度之比等于要求的概率.
解答:解:由題意知本題是一個幾何概型,概率的值對應(yīng)長度之比,
∵-2≤k≤1,其區(qū)間長度是3
又∵對?x∈[0,1],f(x)≥0且f(x)是關(guān)于x的一次型函數(shù),在[0,1]上單調(diào)
f(0)≥0
f(1)≥0
-2≤k≤1

∴-1≤k≤1,其區(qū)間長度為2
∴P=
2
3

故選C
點評:本題主要考查了幾何概型,以及一次函數(shù)的性質(zhì),概率題目的考查中,概率只是一個載體,其他內(nèi)容占的比重較大,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•西城區(qū)二模)已知函數(shù)f(x)=cos2(x-
π
6
)-sin2x

(Ⅰ)求f(
π
12
)
的值;
(Ⅱ)若對于任意的x∈[0,
π
2
]
,都有f(x)≤c,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•西城區(qū)二模)如圖,直角梯形ABCD與等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB⊥BC,AB=2CD=2BC,EA⊥EB.
(Ⅰ)求證:AB⊥DE;
(Ⅱ)求直線EC與平面ABE所成角的正弦值;
(Ⅲ)線段EA上是否存在點F,使EC∥平面FBD?若存在,求出
EFEA
;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•西城區(qū)二模)對數(shù)列{an},如果?k∈N*及λ1,λ2,…,λk∈R,使an+k1an+k-12an+k-2+…+λkan成立,其中n∈N*,則稱{an}為k階遞歸數(shù)列.給出下列三個結(jié)論:
①若{an}是等比數(shù)列,則{an}為1階遞歸數(shù)列;
②若{an}是等差數(shù)列,則{an}為2階遞歸數(shù)列;
③若數(shù)列{an}的通項公式為an=n2,則{an}為3階遞歸數(shù)列.
其中,正確結(jié)論的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•西城區(qū)二模)甲、乙兩人參加某種選拔測試.在備選的10道題中,甲答對其中每道題的概率都是
35
,乙能答對其中的5道題.規(guī)定每次考試都從備選的10道題中隨機抽出3道題進行測試,答對一題加10分,答錯一題(不答視為答錯)減5分,至少得15分才能入選.
(Ⅰ)求乙得分的分布列和數(shù)學期望;
(Ⅱ)求甲、乙兩人中至少有一人入選的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•西城區(qū)二模)執(zhí)行如圖所示的程序框圖,若輸入如下四個函數(shù):
①y=2x;
②y=-2x;
③f(x)=x+x-1;
④f(x)=x-x-1
則輸出函數(shù)的序號為(  )

查看答案和解析>>

同步練習冊答案