【題目】為評(píng)估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)零件的流水線上隨機(jī)抽取100件零件作為樣本,測(cè)量其直徑后,整理得到下表:

直徑

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合計(jì)

件數(shù)

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

經(jīng)計(jì)算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計(jì)值,用樣本估計(jì)總體.

(1)將直徑小于等于或直徑大于的零件認(rèn)為是次品,從設(shè)備的生產(chǎn)流水線上隨意抽取3個(gè)零件,計(jì)算其中次品個(gè)數(shù)的數(shù)學(xué)期望;

(2)為評(píng)判一臺(tái)設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進(jìn)行評(píng)判(表示相應(yīng)事件的概率):①;②;③.評(píng)判規(guī)則為:若同時(shí)滿足上述三個(gè)不等式,則設(shè)備等級(jí)為甲;僅滿足其中兩個(gè),則等級(jí)為乙;若僅滿足其中一個(gè),則等級(jí)為丙;若全部不滿足,則等級(jí)為丁,試判斷設(shè)備的性能等級(jí)并說明理由.

【答案】(1);(2)設(shè)備的性能為丙級(jí)別.理由見解析

【解析】

1)對(duì)于次品個(gè)數(shù)的數(shù)學(xué)期望的求法可采取古典概率的算法,先求出次品率,用符合條件的次品數(shù)/樣本總數(shù),次品可通過尋找直徑小于等于或直徑大于的零件個(gè)數(shù)求得,再根據(jù)該分布符合,進(jìn)行期望的求值

2)根據(jù)(2)提供的評(píng)判標(biāo)準(zhǔn),再結(jié)合樣本數(shù)據(jù)算出在每個(gè)對(duì)應(yīng)事件下的概率,通過比較發(fā)現(xiàn),

,

,

三個(gè)條件中只有一個(gè)符合,等級(jí)為丙

解:(1)由圖表知道:直徑小于或等于的零件有2件,大于的零件有4件,共計(jì)6件,

從設(shè)備的生產(chǎn)流水線上任取一件,取到次品的概率為,依題意

;

(2)由題意知,,

,,,

所以由圖表知道:

,

,

所以該設(shè)備的性能為丙級(jí)別.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的一個(gè)內(nèi)角為,并且三邊長(zhǎng)構(gòu)成公差為4的等差數(shù)列,則的面積為( )

A. 15 B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l過點(diǎn)P1,2),根據(jù)下列條件分別求出直線l的方程(斜截式方程):

1)直線l垂直;

2lx軸、y軸上的截距之和等于0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果函數(shù)的導(dǎo)函數(shù)的圖象如圖所示,則以下關(guān)于函數(shù)的判斷:

①在區(qū)間內(nèi)單調(diào)遞增;

②在區(qū)間內(nèi)單調(diào)遞減;

③在區(qū)間內(nèi)單調(diào)遞增;

是極小值點(diǎn);

是極大值點(diǎn).

其中正確的是( )

A. ③⑤B. ②③C. ①④⑤D. ①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若k≠0,試討論函數(shù)fx)的奇偶性,并說明理由;

2)已知fx)在(﹣,0]上單調(diào)遞減,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2當(dāng)時(shí),方程在區(qū)間內(nèi)有唯一實(shí)數(shù)解,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,平面,且是邊長(zhǎng)為2的等邊三角形,

(1)若是線段的中點(diǎn),證明:直線;

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】繳納個(gè)人所得稅是收入達(dá)到繳納標(biāo)準(zhǔn)的公民應(yīng)盡的義務(wù).

①個(gè)人所得稅率是個(gè)人所得稅額與應(yīng)納稅收入額之間的比例;

②應(yīng)納稅收入額=月度收入-起征點(diǎn)金額-專項(xiàng)扣除金額(三險(xiǎn)一金等);

2018831日,第十三屆全國(guó)人民代表大會(huì)常務(wù)委員會(huì)第五次會(huì)議《關(guān)于修改中華人民共和國(guó)個(gè)人所得稅法的決定》,將個(gè)稅免征額(起征點(diǎn)金額)由3500元提高到5000.下面兩張表格分別是2012年和2018年的個(gè)人所得稅稅率表:

201211日實(shí)行:

級(jí)數(shù)

應(yīng)納稅收入額(含稅)

稅率(

速算扣除數(shù)

不超過1500元的部分

3

0

超過1500元至4500元的部分

10

105

超過4500元至9000元的部分

20

555

超過9000元至35000元的部分

25

1005

超過35000元至55000元的部分

30

2755

超過55000元至80000元的部分

35

5505

超過80000元的部分

45

13505

2018101日試行:

級(jí)數(shù)

應(yīng)納稅收入額(含稅)

稅率(

速算扣除數(shù)

不超過3000元的部分

3

0

超過3000元至12000元的部分

10

210

超過12000元至25000元的部分

20

1410

超過25000元至35000元的部分

25

2660

超過35000元至55000元的部分

30

4410

超過55000元至80000元的部分

35

7160

超過80000元的部分

45

15160

1)何老師每月工資收入均為13404元,專項(xiàng)扣除金額3710元,請(qǐng)問何老師10月份應(yīng)繳納多少元個(gè)人所得稅?若與9月份相比,何老師增加收入多少元?

2)對(duì)于財(cái)務(wù)人員來說,他們計(jì)算個(gè)人所得稅的方法如下:應(yīng)納個(gè)人所得稅稅額=應(yīng)納稅收入額×適用稅率-速算扣除數(shù),請(qǐng)解釋這種計(jì)算方法的依據(jù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)在以為焦點(diǎn)的雙曲線上,過軸的垂線,垂足為,若四邊形為菱形,則該雙曲線的離心率為( )

A. B. 2 C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案