已知橢圓的焦點坐標為F1(-1,0),F2(1,0),過F2垂直于長軸的直線交橢圓于P,Q兩點,且|PQ|=3.
(1)求橢圓的方程;
(2)過F2的直線l與橢圓交于不同的兩點M,N,則△F1MN的內(nèi)切圓的面積是否存在最大值?若存在,求出這個最大值及此時的直線方程;若不存在,請說明理由.

(1)=1(2)最大值為π,且此時直線l的方程為x=1.

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,短軸一個端點到右焦點的距離為.
(1)求橢圓的方程;
(2)設(shè)不與坐標軸平行的直線與橢圓交于兩點,坐標原點到直線的距離為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知橢圓的離心率是分別是橢圓的左、右兩個頂點,點是橢圓的右焦點。點軸上位于右側(cè)的一點,且滿足

(1)求橢圓的方程以及點的坐標;
(2)過點軸的垂線,再作直線與橢圓有且僅有一個公共點,直線交直線于點.求證:以線段為直徑的圓恒過定點,并求出定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線C的頂點為O(0,0),焦點為F(0,1).

(1)求拋物線C的方程;
(2)過點F作直線交拋物線CA,B兩點.若直線AOBO分別交直線lyx-2于M、N兩點,求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,焦距為的橢圓的兩個頂點分別為,且與n,共線.

(1)求橢圓的標準方程;
(2)若直線與橢圓有兩個不同的交點,且原點總在以為直徑的圓的內(nèi)部,
求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓中心在坐標原點,焦點在x軸上,離心率為,它的一個頂點為拋物線x2=4y的焦點.
(1)求橢圓方程;
(2)若直線yx-1與拋物線相切于點A,求以A為圓心且與拋物線的準線相切的圓的方程;
(3)若斜率為1的直線交橢圓于M、N兩點,求△OMN面積的最大值(O為坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線Cy2=2px(p>0),M點的坐標為(12,8),N點在拋物線C上,且滿足,O為坐標原點.

(1)求拋物線C的方程;
(2)以M點為起點的任意兩條射線l1,l2的斜率乘積為1,并且l1與拋物線C交于A,B兩點,l2與拋物線C交于D,E兩點,線段ABDE的中點分別為G,H兩點.求證:直線GH過定點,并求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知動直線與橢圓交于兩不同點,且△的面積=,其中為坐標原點.
(1)證明均為定值;
(2)設(shè)線段的中點為,求的最大值;
(3)橢圓上是否存在點,使得?若存在,判斷△的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)F1,F2分別是橢圓Ex2=1(0<b<1)的左、右焦點,過F1的直線lE相交于A,B兩點,且|AF2|,|AB|,|BF2|成等差數(shù)列.
(1)求|AB|;
(2)若直線l的斜率為1,求b的值.

查看答案和解析>>

同步練習冊答案