已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},若B⊆A,求滿足條件的實數(shù)a的值所組成的集合.
考點:集合的包含關(guān)系判斷及應用
專題:集合
分析:由x2-3x+2=0解得x.可得A={1,2}.由于B⊆A,可得B可能為∅,{1},{2},{1,2}.對于x2-ax+a-1=0,△=a2-4(a-1)=(a-2)2≥0.分類討論:當a=2時,當a≠2時,即可得出.
解答: 解:由x2-3x+2=0解得x=1,2.
∴A={1,2}.
∵B⊆A,∴B可能為∅,{1},{2},{1,2}.
對于x2-ax+a-1=0,△=a2-4(a-1)=(a-2)2≥0.
當a=2時,△=0,B={1},滿足條件;
當a≠2時,△>0,若B={1,2},則
1+2=a
1×2=a-1
,解得a=3.
綜上可得:滿足條件的實數(shù)a的值所組成的集合為{2,3}.
點評:本題考查了集合之間的關(guān)系、分類討論的思想方法,考查了推理能力和計算能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

定義在R上的偶函數(shù)f(x)在(-∞,0]上是減函數(shù),α,β是鈍角三角形的兩個銳角,則下列不等式關(guān)系中正確的是(  )
A、f(sinα)>f(cosβ)
B、f(cosα)<f(cosβ)
C、f(cosα)>f(cosβ)
D、f(sinα)<f(cosβ)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
x2+lnx.
(1)求函數(shù)f(x)在[1,e]上的最大值、最小值;
(2)是否存在實數(shù)a,使函數(shù)g(x)=
1
2
x2+ax-f(x),x∈(0,e]的最小值為3,若存在求出a的值,若不存在說明理由.
(3)求證:[f′(x)]n-f′(xn)≥2n-2(n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2
cos(x-
π
12
),x∈R.
(1)求f(
π
3
)的值;    
(2)若cosθ=
3
5
,θ∈(0,
π
2
),求f(2θ-
π
6
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“宜昌夢,大城夢”.當前,宜昌正以特大城市的建設(shè)理念和標準全力打造宜昌新區(qū),同時加強對舊城區(qū)進行拆除改造.已知舊城區(qū)的住房總面積為64am2,每年拆除的面積相同;新區(qū)計劃用十年建成,第一年新建設(shè)的住房面積為2am2,前四年每年以100%的增長率建設(shè)新住房,從第五年開始,每年新建設(shè)的住房面積比上一年減少2am2
(Ⅰ)若10年后宜昌新、舊城區(qū)的住房總面積正好比目前翻一番,則每年舊城區(qū)拆除的住房面積是多少m2?
(Ⅱ)設(shè)第n年(1≤n≤10且n∈N)新區(qū)的住房總面積為Sn m2,求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡求值:
(1)2 
1
2
+
(-4)0
2
+
1
2
-1
-
(1-
5
)0

(2)
1
5
(lg32-log 
1
2
16+6lg
1
2
)-
1
5
lg5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)向量
a
=(4cosα,sinα),
b
=(sinβ,4cosβ),
c
=(cosβ,-4sinβ).
(1)若
a
⊥(
b
-2
c
),求tan(α+β)的值.
(2)求|
b
+
c
|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tanα=
2
,求下列各式的值:
(1)
cosα+sinα
cosα-sinα

(2)2sin2α-sinαcosα+cos2α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在1,2,3,…,9這9個自然數(shù)中,任取3個不同的數(shù).
(1)求這3個數(shù)和為18的概率;
(2)這3個數(shù)中兩數(shù)相鄰的組數(shù)(例如:若取出的數(shù)為1,2,3,則有兩組相鄰的數(shù)1,2和2,3,此時組數(shù)的值是2).求組數(shù)的值是1時的概率.

查看答案和解析>>

同步練習冊答案