分析 (1)利用正弦定理化簡(jiǎn)已知的等式,根據(jù)B為三角形的內(nèi)角,得到sinB不為0,在等式兩邊同時(shí)除以sinB,得到sinA的值,然后再由A為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可得到A的度數(shù).
(2)由正弦定理可求得sinC的值,由C∈(0,180°),可得C,從而可求B,利用三角形面積公式即可得解.
解答 (本小題滿分12分)
解:(1)解:根據(jù)正弦定理化簡(jiǎn)b=2asinB得:sinB=2sinAsinB,
∵sinB≠0,在等式兩邊同時(shí)除以sinB得sinA=$\frac{1}{2}$,
又A為三角形的內(nèi)角,
則A=30°或150°.
∵b>a,A為銳角,
∴A=30°.
(2)∵由正弦定理可得:sinC=$\frac{csinA}{a}$=$\frac{2\sqrt{3}×\frac{1}{2}}{2}$=$\frac{\sqrt{3}}{2}$,
∴由C∈(0,180°),可得:C=60°或120°,
∴B=180°-A-C=90°或30°(b>a,故舍去),即sinB=1.
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×2×2\sqrt{3}×1$=2$\sqrt{3}$.
點(diǎn)評(píng) 此題考查了正弦定理,以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關(guān)鍵,同時(shí)在求值時(shí)注意三角形內(nèi)角的范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | m<n | B. | n<m | ||
C. | n=m | D. | 不能確定m,n的大小 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
分?jǐn)?shù)段 | [0,90) | [90,100) | [100,110) | [110,120) | [120,130) | [130,150] |
人數(shù) | 8 | 8 | 10 | 12 | 6 | 6 |
A. | 0.44,0.52 | B. | 0.44,1 | C. | 0.20,0.48 | D. | 0.20,0.52 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com