(本小題滿分12分)
如圖,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=,AD=,EF=2.
(1)求證:AE//平面DCF;
(2)當(dāng)AB的長為何值時(shí),二面角A-EF-C的大小為.
(1) 略
(2)
【解析】方法一:(Ⅰ)證明:過點(diǎn)作交于,連結(jié),
可得四邊形為矩形,又為矩形,所以,
從而四邊形為平行四邊形,故.因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052223495292186489/SYS201205222351219843438161_DA.files/image012.png">平面,
平面,
所以平面.………6分
(Ⅱ)解:過點(diǎn)作交的延長線于,連結(jié).
由平面平面,,得平面,
從而.所以為二面角的平面角.
在中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052223495292186489/SYS201205222351219843438161_DA.files/image030.png">,,
所以,.又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052223495292186489/SYS201205222351219843438161_DA.files/image034.png">,所以,
從而,于是,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052223495292186489/SYS201205222351219843438161_DA.files/image038.png">所以當(dāng)為時(shí),二面角的大小為………12分
方法二:如圖,以點(diǎn)為坐標(biāo)原點(diǎn),以和分別作為軸,軸和軸,建立空間直角坐標(biāo)系.設(shè),
則,,,,.
(Ⅰ)證明:,,,
所以,,從而,,
所以平面.因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052223495292186489/SYS201205222351219843438161_DA.files/image061.png">平面,所以平面平面.
故平面.………6分
(Ⅱ)解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052223495292186489/SYS201205222351219843438161_DA.files/image064.png">,,所以,,從而
解得.所以,.設(shè)與平面垂直,
則,,解得.又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052223495292186489/SYS201205222351219843438161_DA.files/image077.png">平面,,所以,
得到.所以當(dāng)為時(shí),二面角的大小為.………12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動(dòng)經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com