A. | $\frac{625}{16}$ | B. | 16 | C. | $\frac{25}{16}$ | D. | 18 |
分析 利用基本不等式進行求解,先求出(x+y)($\frac{1}{x}$+$\frac{a}{y}$)的最小值為($\sqrt{a}$+1)2,然后解不等式即可
解答 解:(x+y)($\frac{1}{x}$+$\frac{a}{y}$)=1+a+$\frac{y}{x}$+$\frac{ax}{y}$≥1+a+2$\sqrt{\frac{y}{x}•\frac{ax}{y}}$=1+a+2$\sqrt{a}$=($\sqrt{a}$+1)2,
∴(x+y)($\frac{1}{x}$+$\frac{a}{y}$)的最小值為($\sqrt{a}$+1)2,
∵不等式$(x+y)(\frac{1}{x}+\frac{a}{y})≥25$對任意正實數(shù)x,y恒成立,
∴($\sqrt{a}$+1)2≥25,
即$\sqrt{a}$+1≥5,
則a≥16,
即正實數(shù)a的最小值為16,
故選:B.
點評 本題主要考查基本不等式的應用,利用基本不等式先求出:(x+y)($\frac{1}{x}$+$\frac{a}{y}$)的最小值為($\sqrt{a}$+1)2是解決本題的關鍵
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{2\sqrt{6}}{3}$ | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\frac{3}{2}$,+∞) | B. | (-∞,-2)∪(2,+∞) | C. | (-∞,-2) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | -7 | C. | -9 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 恒大于0 | B. | 恒小于0 | C. | 可正可負 | D. | 可能為0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com