分析 (1)根據函數的周期,最值過定點,求出A,ω和φ的值即可,
(2)結合三角函數的單調性進行求解即可.
解答 解:(1)∵函數的最小正周期為π,最大值為2,
∴A=2,T=$\frac{2π}{ω}=π$,即ω=2,
則函數y=2sin(2x+φ),
∵函數過(0,1)點,
∴2sinφ=1,即sinφ=$\frac{1}{2}$,
∵|φ|<$\frac{π}{2}$,∴φ=$\frac{π}{6}$,
則$y=2sin(2x+\frac{π}{6})$.
(2)由2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,k∈Z,
得kπ+$\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$,k∈Z,
即函數的單調遞減區(qū)間為為$[kπ+\frac{π}{6},kπ+\frac{2π}{3}](k∈Z)$.
點評 本題主要考查三角函數解析式的求解,結合條件求出A,ω和φ的值是解決本題的關鍵.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | x1>x2 | B. | x1>|x2| | C. | x1<x2 | D. | x${\;}_{1}^{2}$>x${\;}_{2}^{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(x1)<f(x2) | B. | f(x1)=f(x2) | ||
C. | f(x1)>f(x2) | D. | f(x1)、f(x&2)的大小不確定 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com