16.已知數(shù)列{an}滿足:a1=2,an+1=1-$\frac{1}{{a}_{n}}$,則a2016=(  )
A.2B.$\frac{1}{2}$C.-1D.1

分析 利用遞推關(guān)系可得an+3=an,即可得出.

解答 解:∵數(shù)列{an}滿足:a1=2,an+1=1-$\frac{1}{{a}_{n}}$,
∴a2=1-$\frac{1}{2}$=$\frac{1}{2}$,同理可得:a3=-1,a4=2,….
∴an+3=an
則a2016=a3×671+3=a3=-1.
故答案為:C.

點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、數(shù)列的周期性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,直三棱柱ABC-A1B1C1中,AC⊥AB,AB=2AA1,M是AB的中點(diǎn),△A1MC1是等腰三角形,D為CC1的中點(diǎn),E為BC上一點(diǎn).
(1)若DE∥平面A1MC1,求$\frac{CE}{EB}$;
(2)求證:平面B1MC1⊥平面A1MC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在四棱錐中P-ABCD,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=$\frac{{\sqrt{2}}}{2}$AD、E、F,分別為PC、BD的中點(diǎn).
(1)求證:EF∥平面PAD;
(2)在線段AB上是否存在點(diǎn)G,使得二面角C-PD-G的余弦值為$\frac{{\sqrt{3}}}{3}$,若存在,請(qǐng)求出點(diǎn)G的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在棱長(zhǎng)為2R的正方體容器內(nèi)裝滿水,先把半徑為R的球放入水中,然后再放入一球,使它淹沒在水中,且使溢出的水最多,則先后放入的兩個(gè)球的半徑之比為2+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.某研究機(jī)構(gòu)對(duì)高三學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計(jì)分析,得到下表數(shù)據(jù)
x681012
y2356
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(2)試根據(jù)(2)中求出的線性回歸方程,預(yù)測(cè)記憶力為9的同學(xué)的判斷力.
(相關(guān)公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$x,參考數(shù)據(jù)$\sum_{i=1}^{4}$xiyi=158,$\sum_{i=1}^{4}$x${\;}_{i}^{2}$=344)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=x3+ax2+bx+c,x∈[-2,2]表示過原點(diǎn)的曲線,且在x=±1處的切線的傾斜角均為$\frac{3}{4}π$,有以下命題:
①f(x)的解析式為f(x)=x3-4x,x∈[-2,2].
②f(x)的極值點(diǎn)有且只有一個(gè).
③f(x)的最大值與最小值之和等于零.
其中正確命題的序號(hào)為①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知圓C的圓心為(3,1),且圓C與直線y=x相切.
(1)圓C的方程是(x-3)2+(y-1)2=2;
(2)若圓C與直線l:x-y+a=0(a≠0)交于A、B兩點(diǎn),且|AB|=2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知直線x+ay=1-a與直線(a-2)x+3y+2=0垂直,則實(shí)數(shù)a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若函數(shù)y=log2(kx2-2kx+8)的定義域?yàn)橐磺袑?shí)數(shù),則實(shí)數(shù)k的取值范圍為[0,8).

查看答案和解析>>

同步練習(xí)冊(cè)答案