【題目】某大學棋藝協(xié)會定期舉辦“以棋會友”的競賽活動,分別包括“中國象棋”、“圍棋”、“五子棋”、“國際象棋”四種比賽,每位協(xié)會會員必須參加其中的兩種棋類比賽,且各隊員之間參加比賽相互獨立;已知甲同學必選“中國象棋”,不選“國際象棋”,乙同學從四種比賽中任選兩種參與.
(1)求甲參加圍棋比賽的概率;
(2)求甲、乙兩人參與的兩種比賽都不同的概率.
科目:高中數(shù)學 來源: 題型:
【題目】某校在一次期末數(shù)學測試中,為統(tǒng)計學生的考試情況,從學校的2000名學生中隨機抽取50名學生的考試成績,被測學生成績?nèi)拷橛?5分到145分之間(滿分150分),將統(tǒng)計結(jié)果按如下方式分成八組:第一組,,第二組,,第八組,,如圖是按上述分組方法得到的頻率分布直方圖的一部分.
(1)求第七組的頻率,并完成頻率分布直方圖;
(2)用樣本數(shù)據(jù)估計該校的2000名學生這次考試成績的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表該組數(shù)據(jù)平均值);
(3)若從樣本成績屬于第六組和第八組的所有學生中隨機抽取2名,求他們的分差的絕對值小于10分的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,曲線的極坐標方程為,直線的極坐標方程為,設(shè)與交于、兩點,中點為,的垂直平分線交于、.以為坐標原點,極軸為軸的正半軸建立直角坐標系.
(1)求的直角坐標方程與點的直角坐標;
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)經(jīng)過點的直線與拋物線相交于、兩點,經(jīng)過點的直線與拋物線相切于點.
(1)當時,求的取值范圍;
(2)問是否存在直線,使得成立,若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間和的極值;
(2)對于任意的,,都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,已知,頂點P在平面ABC上的射影為的外接圓圓心.
(1)證明:平面平面ABC;
(2)若點M在棱PA上,,且二面角P-BC-M的余弦值為,試求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某印刷廠為了研究單冊書籍的成本(單位:元)與印刷冊數(shù)(單位:千冊)之間的關(guān)系,在印制某種書籍時進行了統(tǒng)計,相關(guān)數(shù)據(jù)見下表:
印刷冊數(shù)(千冊) | |||||
單冊成本(元) |
根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲:,方程乙:.
(1)為了評價兩種模型的擬合效果,完成以下任務.
①完成下表(計算結(jié)果精確到);
印刷冊數(shù)(千冊) | ||||||
單冊成本(元) | ||||||
模型甲 | 估計值 | |||||
殘差 | ||||||
模型乙 | 估計值 | |||||
殘差 |
②分別計算模型甲與模型乙的殘差平方和,并通過比較,判斷哪個模型擬合效果更好.
(2)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進行二次印刷,根據(jù)市場調(diào)查,新需求量為千冊,若印刷廠以每冊元的價格將書籍出售給訂貨商,求印刷廠二次印刷千冊獲得的利潤?(按(1)中擬合效果較好的模型計算印刷單冊書的成本).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】概率論起源于博弈游戲.17世紀,曾有一個“賭金分配“的問題:博弈水平相當?shù)募、乙兩人進行博弈游戲,每局比賽都能分出勝負,沒有平局.雙方約定,各出賭金48枚金幣,先贏3局者可獲得全部賭金;但比賽中途因故終止了,此時甲贏了2局,乙贏了1局.向這96枚金幣的賭金該如何分配?數(shù)學家費馬和帕斯卡都用了現(xiàn)在稱之為“概率“的知識,合理地給出了賭金分配方案.該分配方案是( )
A.甲48枚,乙48枚B.甲64枚,乙32枚
C.甲72枚,乙24枚D.甲80枚,乙16枚
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com