函數(shù)y=f(x)與函數(shù)y=g(x)有相同的定義域,且都不是常函數(shù),對定義域內(nèi)的任何x,有f(x)+f(-x)=0,g(x)g(-x)=1,且g(x)≠1,則F(x)=數(shù)學(xué)公式


  1. A.
    奇函數(shù)
  2. B.
    偶函數(shù)
  3. C.
    既是奇函數(shù)又是偶函數(shù)
  4. D.
    既不是奇函數(shù)也不是偶函數(shù)
B
分析:根據(jù)奇偶性的定義進(jìn)行判斷,解題時(shí)注意化簡到位.
解答:∵f(x)+f(-x)=0,g(x)g(-x)=1,且g(x)≠1,F(xiàn)(x)=
F(-x)======F(x)
∴F(x)是偶函數(shù)
故選B.
點(diǎn)評:本題主要考查了抽象函數(shù)及其應(yīng)用,以及函數(shù)的單調(diào)性,同時(shí)考查了運(yùn)算求解的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

14、若函數(shù)y=f(x)(x∈R)滿足f(x+2 )=f(x),且x∈[-1,1]時(shí),f(x)=|x|,函數(shù)y=g(x)是偶函數(shù),且x∈(0,+∞)時(shí),g(x)=|log3x|.則函數(shù)y=f(x)圖象與函y=g(x)圖象的交點(diǎn)個(gè)數(shù)為
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,給出了一個(gè)程序框圖,其作用是輸入x的值,輸出相應(yīng)的y的值,
(I)請指出該程序框圖所使用的邏輯結(jié)構(gòu);
(Ⅱ)若視x為自變量,y為函數(shù)值,試寫出函數(shù)y=f(x)的解析式;
(Ⅲ)若要使輸入的x的值與輸出的y的值相等,則輸入x的值的集合為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函f(x)=lnx-ax2+(2-a)x.
①討論f(x)的單調(diào)性;
②設(shè)a>0,證明:當(dāng)0<x<
1
a
時(shí),f(
1
a
+x)>f(
1
a
-x)
;
③函數(shù)y=f(x)的圖象與x軸相交于A、B兩點(diǎn),線段AB中點(diǎn)的橫坐標(biāo)為x0,證明f′(x0)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

①函數(shù)y=f(-x+2)與y=f(x-2)的圖象關(guān)于y軸對稱;
②用二分法求函數(shù)f(x)=lnx+x-2在(1,2)上零點(diǎn)的近似值,要求精確度0.1,則至少需要五次對對應(yīng)區(qū)間中點(diǎn)的函數(shù)值的計(jì)算;
③函數(shù)f(x)(其中f(x)恒不等于0)滿足 f(x)=f(x+1)f(x-1),則f(2013)f(0)=1;
④若f(1-x)=-f(x+1),則函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(2,0)對稱.
其中正確命題的序號是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知函數(shù)y=f(x)在[0,+∞)上是減函數(shù),試比較f(
34
)與f(a2-a+1)的大;
(2)已知函y=f(x)是定義在在(0,+∞)上的減函數(shù),若f(a+1)<f(1-4a)成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案