已知二階矩陣M有特征值λ=3及對(duì)應(yīng)的一個(gè)特征向量
e1
=
1
1
,并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(-1,2)變換成(3,0),求矩陣M.
考點(diǎn):矩陣變換的性質(zhì)
專題:選作題,矩陣和變換
分析:先設(shè)矩陣這里a,b,c,d∈R,由二階矩陣M有特征值λ=3及對(duì)應(yīng)的一個(gè)特征向量
e1
=
1
1
及矩陣M對(duì)應(yīng)的變換將點(diǎn)(-1,2)換成(3,0).得到關(guān)于a,b,c,d的方程組,即可求得矩陣M.
解答: 解:設(shè)矩陣M=
ab
cd
,這里a,b,c,d∈R,
ab
cd
 
1
1
=3 
1
1
=
3
3
,故
a+b=3
c+d=3
       ①
ab
cd
-1
2
=
3
0
,故
-a+2b=3 
-c+2d=0
        ②
由①②聯(lián)立解得
a=1
b=2
c=2
d=1
,∴M=
12
21
點(diǎn)評(píng):本題主要考查了二階矩陣,以及特征值與特征向量的計(jì)算,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A,B,C三點(diǎn)的坐標(biāo)分別為A(3,0),B(0,3),C(cosα,sinα),α∈(
π
2
,
2
).
(Ⅰ)若|
AC
|=|
BC
|,求角α的值;
(Ⅱ)求y=
1
3
(3sinαcosα-
AC
BC
+1)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分別為AB、AC中點(diǎn).
(1)求證:DE∥平面PBC;
(2)求證:AB⊥PE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和記作Sn,滿足 Sn=2an+3n-12(n∈N*
(Ⅰ)證明數(shù)列{an-3}為等比數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記bn=nan,數(shù)列{bn}的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知Sn=2an-2n+1(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求證:當(dāng)x>0時(shí),ln(x+1)>
x
x+1
;
(Ⅲ)令cn=(-1)n+1log
an
n+1
2
,數(shù)列{cn}的前2n項(xiàng)和為T2n.利用(2)的結(jié)論證明:當(dāng)n∈N*且n≥2時(shí),
T
 
2n
<ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某公司生產(chǎn)A,B,C三款手機(jī),每款均有標(biāo)準(zhǔn)型和豪華型兩種型號(hào),某月的產(chǎn)量如表所示(單位:臺(tái)).
A B C
標(biāo)準(zhǔn)型 100 150 z
豪華型 300 450 600
按款分層抽樣的方法在本月生產(chǎn)的手機(jī)中抽取50臺(tái),其中A款抽到了10臺(tái).
(1)求z;
(2)用分層抽樣的方法在C款中抽取一個(gè)容量為5的樣本,將該樣本看成一個(gè)總體,從中任取2臺(tái),求至少有一臺(tái)標(biāo)準(zhǔn)型手機(jī)的概率;
(3)用隨機(jī)抽樣的方法從B款手機(jī)中抽取8臺(tái)檢測(cè)性能,經(jīng)檢測(cè)它們的評(píng)分如下:9.4、8.6、9.2、9.6、8.7、9.3、9.0、8.2.把這8臺(tái)手機(jī)的評(píng)分看成一個(gè)整體,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對(duì)值超過(guò)0.5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將演繹推理:“y=log
1
2
x在(0,+∞)上是減函數(shù)”恢復(fù)成完全的三段論,其中大前提是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cos(x+
π
6
)=
1
4
,則cos(
6
-x)+cos2
π
3
-x)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z滿足(3-4i)z=|4+3i|,則z在復(fù)平面中所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案