【題目】已知正方體的棱長(zhǎng)為2.
(1)求點(diǎn)到平面的距離;
(2)平面截該正方體的內(nèi)切球,求截面積的大;
【答案】(1);(2)
【解析】
(1)求出平面ACD1的法向量,利用向量法能求出點(diǎn)B到平面ACD1的距離.
(2)根據(jù)正方體和球的結(jié)構(gòu)特征,求得球O被平面ACD1所截得的圓的半徑即可.
(1)以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,
A(2,0,0),B(2,2,0),C1(0,2,2),C(0,2,0),D1(0,0,2),
(0,﹣2,2),(﹣2,2,0),
(0,2,0),
設(shè)平面ACD1的法向量(x,y,z),
則,取y=1,得(1,1,1),
∴點(diǎn)B到平面ACD1的距離d.
(2)如圖,O為球心,也是正方體的中心,
設(shè)球O被平面ACD1所截得截面為△AC的內(nèi)切圓,半徑為r,AC中點(diǎn)為M,
則rD1M,
故截面圓的面積π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線∶和圓∶,是直線上一點(diǎn),過點(diǎn)作圓的兩條切線,切點(diǎn)分別為.
(1)若,求點(diǎn)坐標(biāo);
(2)若圓上存在點(diǎn),使得,求點(diǎn)的橫坐標(biāo)的取值范圍;
(3)設(shè)線段的中點(diǎn)為,與軸的交點(diǎn)為,求線段長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是以為公差的等差數(shù)列,數(shù)列的前項(xiàng)和為,滿足, ,則不可能是( )
A. -1 B. 0
C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
()求函數(shù)的單調(diào)區(qū)間.
()若對(duì)任意, , 恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象經(jīng)過點(diǎn),且在點(diǎn)處的切線方程為.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(其中)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象上一個(gè)最低點(diǎn)為.
(Ⅰ)求的解析式;
(Ⅱ)當(dāng),求的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:過點(diǎn)和點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于不同的兩點(diǎn), ,是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: (為參數(shù)),是上的動(dòng)點(diǎn),且滿足(為坐標(biāo)原點(diǎn)),以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)為
(1)求線段的中點(diǎn)的軌跡的普通方程;
(2)證明:為定值,并求面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩臺(tái)機(jī)床同時(shí)生產(chǎn)一種零件,在天中,兩臺(tái)機(jī)床每天生產(chǎn)的次品數(shù)分別為:
甲:;乙:.
(1)分別求兩組數(shù)據(jù)的眾數(shù)、中位數(shù);
(2)根據(jù)兩組數(shù)據(jù)平均數(shù)和標(biāo)準(zhǔn)差的計(jì)算結(jié)果比較兩臺(tái)機(jī)床性能.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com