3.設(shè)x∈R,則“|x-1|<2”是“x2-4x-5<0”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)不等式的性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.

解答 解:|x-1|<2得:-1<x<3,
解x2-4x-5<0得:-1<x<5,
故“|x-1|<2”是“x2-4x-5<0”的充分而不必要條件,
故選:A

點(diǎn)評 本題主要考查充分條件和必要條件的判斷,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=sin(ωx+$\frac{π}{4}$)(ω>0)在($\frac{π}{12}$,$\frac{π}{3}$)上有最大值,但沒有最小值,則ω的取值范圍是($\frac{3}{4}$,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某公司的招聘考試有編號分別為1,2,3的三個(gè)不同的4類基本題和一道A類附加題:另有編號分別為4,5的兩個(gè)不同的B類基本題和一道B類附加題.甲從這五個(gè)基本題中一次隨機(jī)抽取兩道題,每題做對做錯(cuò)及每題被抽到的概率是相等的.
(I)用符號(x,y)表示事件“抽到的兩題的編號分別為x、y,且x<y”共有多少個(gè)基本事件?請列舉出來;
(Ⅱ)求甲所抽取的兩道基本題的編號之和小于8但不小于4的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知sin($\frac{2π}{3}$-α)+sinα=$\frac{4\sqrt{3}}{5}$,則sin(α+$\frac{7π}{6}$)的值是(  )
A.-$\frac{4}{5}$B.-$\frac{3}{5}$C.-$\frac{2}{5}$D.-$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知拋物線y2=2px (p>0)上的一點(diǎn)M到定點(diǎn)A($\frac{7}{2}$,4)和焦點(diǎn)F的距離之和的最小值等于5,則P=3或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知離心率e=$\frac{\sqrt{5}}{2}$的雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F,O為坐標(biāo)原點(diǎn),以O(shè)F為直徑的圓與雙曲線C的一條漸近線相交于O、A兩點(diǎn),若△AOF的面積為1,則實(shí)數(shù)a的值為( 。
A.1B.$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知圓C:x2+y2-2x-4y=0,則下列點(diǎn)在圓C內(nèi)的是( 。
A.(4,1)B.(5,0)C.(3,4)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=mlnx+8x-x2在[1,+∞)上單調(diào)遞減,則實(shí)數(shù)m的取值范圍為( 。
A.(-∞,-8]B.(-∞,-8)C.(-∞,-6]D.(-∞,-6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖四邊形PABC中,∠PAC=∠ABC=90°,$PA=AB=2\sqrt{3},AC=4$,現(xiàn)把△PAC沿AC折起,使PA與平面ABC成60°,設(shè)此時(shí)P在平面ABC上的投影為O點(diǎn)(O與B在AC的同側(cè)),

(1)求證:OB∥平面PAC;
(2)求二面角P-BC-A大小的正切值.

查看答案和解析>>

同步練習(xí)冊答案