【題目】某旅游勝地欲開發(fā)一座景觀山,從山的側(cè)面進(jìn)行勘測(cè),迎面山坡線由同一平面的兩段拋物線組成,其中所在的拋物線以為頂點(diǎn)、開口向下,所在的拋物線以為頂點(diǎn)、開口向上,以過(guò)山腳(點(diǎn))的水平線為軸,過(guò)山頂(點(diǎn))的鉛垂線為軸建立平面直角坐標(biāo)系如圖(單位:百米).已知所在拋物線的解析式,所在拋物線的解析式為

(1)求值,并寫出山坡線的函數(shù)解析式;

(2)在山坡上的700米高度(點(diǎn))處恰好有一小塊平地,可以用來(lái)建造索道站,索道的起點(diǎn)選擇在山腳水平線上的點(diǎn)處,(米),假設(shè)索道可近似地看成一段以為頂點(diǎn)、開口向上的拋物線當(dāng)索道在上方時(shí),索道的懸空高度有最大值,試求索道的最大懸空高度;

(3)為了便于旅游觀景,擬從山頂開始、沿迎面山坡往山下鋪設(shè)觀景臺(tái)階,臺(tái)階每級(jí)的高度為20厘米,長(zhǎng)度因坡度的大小而定,但不得少于20厘米,每級(jí)臺(tái)階的兩端點(diǎn)在坡面上(見圖).試求出前三級(jí)臺(tái)階的長(zhǎng)度(精確到厘米),并判斷這種臺(tái)階能否一直鋪到山腳,簡(jiǎn)述理由?

【答案】1

(2)米 (3)第一級(jí)臺(tái)階的長(zhǎng)度為厘米,第二級(jí)臺(tái)階的長(zhǎng)度為厘米,第三級(jí)臺(tái)階的長(zhǎng)度為厘米,這種臺(tái)階不能從山頂一直鋪到山腳.

【解析】

(1)將點(diǎn)點(diǎn)B(4,4)分別代入,求出即可求得函數(shù)的解析式;

(2)由已知有索道在上方時(shí),懸空高度

利用配方法可得=,再求最大值即可;

(3)由(1)得,在山坡線上,,,

分別求出

再運(yùn)算可得各級(jí)臺(tái)階的長(zhǎng)度,再取點(diǎn),又取,

運(yùn)算可得,即這種臺(tái)階不能一直鋪到山腳,得解.

解:(1)將點(diǎn)B(4,4)分別代入,

解得

;

(2)由圖可知:,由圖觀察可得:只有當(dāng)索道在上方時(shí),索道的懸空高度才有可能取最大值,

索道在上方時(shí),懸空高度==,

當(dāng)時(shí),

故索道的最大懸空高度為米;

(3)在山坡線上,,,

①令,得,

所以第一級(jí)臺(tái)階的長(zhǎng)度為(百米)(厘米),

同理,令

所以第一級(jí)臺(tái)階的長(zhǎng)度為(百米)(厘米),

所以第二級(jí)臺(tái)階的長(zhǎng)度為(百米)(厘米),

所以第三級(jí)臺(tái)階的長(zhǎng)度為(百米)(厘米),

②取點(diǎn),又取

,

因?yàn)?/span>

故這種臺(tái)階不能從山頂一直鋪到點(diǎn),從而就不能一直鋪到山腳.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)證明在區(qū)間內(nèi)有且僅有唯一實(shí)根;

(2)記在區(qū)間內(nèi)的實(shí)根為,函數(shù),若方程在區(qū)間有兩不等實(shí)根,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:若數(shù)列中存在,其中,,,均為正整數(shù),且),則稱數(shù)列數(shù)列”.

1)若數(shù)列的前項(xiàng)和,求證:數(shù)列;

2)若是首項(xiàng)為1,公比為的等比數(shù)列,判斷是否是數(shù)列,說(shuō)明理由;

3)若是公差為)的等差數(shù)列且),,求證:數(shù)列數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在實(shí)數(shù)集R中,我們定義的大小關(guān)系為全體實(shí)數(shù)排了一個(gè).類似的,我們?cè)谄矫嫦蛄考?/span>上也可以定義一個(gè)稱的關(guān)系,記為.定義如下:對(duì)于任意兩個(gè)向量當(dāng)且僅當(dāng)。按上述定義的關(guān)系,給出如下四個(gè)命題:

,則;

,則;

,則對(duì)于任意;

對(duì)于任意向量,若,則

其中真命題的序號(hào)為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓F和拋物線,過(guò)F的直線與拋物線和圓依次交于A、B、C、D四點(diǎn),求的值是( )

A.1B.2C.3D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分12分) 如圖,的外接圓的半徑為,所在的平面,,,,且

1)求證:平面ADC平面BCDE

2)試問(wèn)線段DE上是否存在點(diǎn)M,使得直線AM與平面ACD所成角的正弦值為?若存在,

確定點(diǎn)M的位置,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)滿足:對(duì)任意實(shí)數(shù)以及定義中任意兩數(shù)),恒有,則稱是下凸函數(shù).

(1)證明:函數(shù)是下凸函數(shù);

(2)判斷是不是下凸函數(shù),并說(shuō)明理由;

(3)若是定義在上的下凸函數(shù),常數(shù),滿足:,,且,求證:,并求上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若時(shí),的解集為時(shí),求實(shí)數(shù)的值;

2)若對(duì)任意,存在,使,求實(shí)數(shù)的范圍;

3)集合,若,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),某市為促進(jìn)生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設(shè)置了相應(yīng)的垃圾箱.為調(diào)查居民生活垃圾分類投放情況,現(xiàn)隨機(jī)抽取了該市三類垃圾箱中總計(jì)1000t生活垃圾.經(jīng)分揀以后數(shù)據(jù)統(tǒng)計(jì)如下表(單位:):根據(jù)樣本估計(jì)本市生活垃圾投放情況,下列說(shuō)法錯(cuò)誤的是(

廚余垃圾

可回收物

其他垃圾

廚余垃圾

400

100

100

可回收物

30

240

30

其他垃圾

20

20

60

A.廚余垃圾投放正確的概率為

B.居民生活垃圾投放錯(cuò)誤的概率為

C.該市三類垃圾箱中投放正確的概率最高的是可回收物

D.廚余垃圾在廚余垃圾箱、可回收物箱、其他垃圾箱的投放量的方差為20000

查看答案和解析>>

同步練習(xí)冊(cè)答案