已知函數(shù)f(x)=x3+ax2+bx在x=-數(shù)學(xué)公式與x=1處都取得極值.
(Ⅰ)求a、b的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間及極大值、極小值.

解:(I)f(x)=x3+ax2+bx,f′(x)=3x2+2ax+b
由f′()=-a+b=0,f′(1)=3+2a+b=0
得a=-,b=-2
經(jīng)檢驗,a=-,b=-2符合題意;
(II)由(I)得所求的函數(shù)解析式為f(x)=x3-x2-2x;
f′(x)=3x2-x-2=(3x+2)(x-1),
列表
x(-∞,--(-,1)1(1,+∞)
f′(x)+0-0+
f(x)極大值極小值
所以函數(shù)f(x)的遞增區(qū)間為(-∞,-),(1,+∞)遞減區(qū)間為(-,1),
極大值為f(x)極大值=f(-)=,極小值為f(1)極小值=-
分析:(I)根據(jù)所給的函數(shù)的解析式,對函數(shù)求導(dǎo),使得導(dǎo)函數(shù)等于0,得到關(guān)于a,b的關(guān)系式,解方程組即可,寫出函數(shù)的解析式.
(II)對函數(shù)求導(dǎo),寫出函數(shù)的導(dǎo)函數(shù)等于0的x的值,列表表示出在各個區(qū)間上的導(dǎo)函數(shù)和函數(shù)的單調(diào)性情況,做出極值,把極值同端點處的值進(jìn)行比較得到結(jié)果.
點評:考查學(xué)生利用導(dǎo)數(shù)求函數(shù)極值的能力,利用導(dǎo)數(shù)研究函數(shù)單調(diào)性的能力,以及掌握函數(shù)在某點取得極值的條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案