已知直線x+2y+3=0與直線mx+y+1=0垂直,則m為( 。
A、2
B、
1
2
C、-
1
2
D、-2
考點(diǎn):直線的一般式方程與直線的垂直關(guān)系
專題:直線與圓
分析:利用兩條直線垂直與斜率的關(guān)系即可得出.
解答: 解:直線x+2y+3=0與直線mx+y+1=0分別化為:y=-
1
2
x-
3
2
,y=-mx-1.
∵直線x+2y+3=0與直線mx+y+1=0垂直,∴-
1
2
×(-m)
=-1.
解得m=-2.
故選:D.
點(diǎn)評(píng):本題考查了兩條直線垂直與斜率的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

甲乙兩輛車去同一貨場裝貨物,貨場每次只能給一輛車裝貨物,所以若兩輛車同時(shí)到達(dá),則需要有一輛車等待.已知甲、乙兩車裝貨物需要的時(shí)間都為20分鐘,倘若甲、乙兩車都在某1小時(shí)內(nèi)到達(dá)該貨場(在此期間貨場沒有其他車輛),則至少有一輛車需要等待裝貨物的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,半圓的半徑OA=3,O為圓心,C為半圓上不同于A、B的任意一點(diǎn),若P為半徑OC上的動(dòng)點(diǎn),則(
PA
+
PB
)•
PC
的最小值為( 。
A、-3
B、-
27
10
C、-
9
2
D、-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
C
0
n
+2
C
1
n
+22
C
2
n
+…+2n
C
n
n
=729,則
C
1
n
+
C
3
n
+
C
5
n
的值等于( 。
A、64B、32C、63D、31

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)判斷:
①?x∈R,x2-x+1≤0;
②已知隨機(jī)變量X服從正態(tài)分布N(3,σ2),P(X≤6)=0.72,則P(X≤0)=0.28;
③已知(x2+
1
x
n的展開式的各項(xiàng)系數(shù)和為32,則展開式中x項(xiàng)的系數(shù)為20;
1
0
1-x2
dx>
e
1
1
x
dx
其中正確的個(gè)數(shù)有(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m∈R,則關(guān)于x的方程x2+4x+2=m有解的一個(gè)必要不充分條件是( 。
A、m>-2B、m<-2
C、m>-3D、m<-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
3
x3-x2+a,函數(shù)g(x)=x2-3x,它們的定義域均為[1,+∞),并且函數(shù)f(x)的圖象始終在函數(shù)g(x)的上方,那么a的取值范圍是( 。
A、(0,+∞)
B、(-∞,0)
C、(-
4
3
,+∞)
D、(-∞,
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|22x-1
1
4
},B={y|log 
1
16
y≥
1
2
},則∁RA∩B=( 。
A、∅
B、(0,
1
4
C、(0,
1
4
]
D、(-
1
2
1
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱錐S-ABC,SA=SB=SC,SG為△SAB上的高,D、E、F為AC、BC、SC的中點(diǎn).
(1)證明:面SAB∥面FDE;
(2)判斷SG與面DEF的位置關(guān)系,并給出證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案