已知動點M的坐標(biāo)滿足
,則動點M的軌跡方程是
試題分析:
變形為
,該式表示動點
到定點
的距離與到定直線
的距離比為常數(shù)
,根據(jù)橢圓的第二定義可知動點的軌跡是橢圓
點評:橢圓的第二定義:到定點的距離與到定直線的距離之比為常數(shù)(小于1)的動點的軌跡是橢圓
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本大題滿分14分)
已知△
的兩個頂點
的坐標(biāo)分別是
,
,且
所在直線的斜率之積等于
.
(Ⅰ)求頂點
的軌跡
的方程,并判斷軌跡
為何種圓錐曲線;
(Ⅱ)當(dāng)
時,過點
的直線
交曲線
于
兩點,設(shè)點
關(guān)于
軸的對稱點為
(
不重合).求證直線
與
軸的交點為定點,并求出該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
已知點
,
,△
的周長為6.
(Ⅰ)求動點
的軌跡
的方程;
(Ⅱ)設(shè)過點
的直線
與曲線
相交于不同的兩點
,
.若點
在
軸上,且
,求點
的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如圖,F(xiàn)
1,F(xiàn)
2是雙曲線C:
(a>0,b>0)的左、右焦點,過F
1的直線
與
的左、右兩支分別交于A,B兩點.若 | AB | : | BF
2 | : | AF
2 |=3:4 : 5,則雙曲線的離心率為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知a,b為正常數(shù),F(xiàn)
1,F(xiàn)
2是兩個定點,且|F
1F
2|=2a(a是正常數(shù)),動點P滿足|PF
1|+|PF
2|=a
2+1,則動點P的軌跡是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖,已知橢圓
的左、右準(zhǔn)線分別為
,且分別交
軸于
兩點,從
上一點
發(fā)出一條光線經(jīng)過橢圓的左焦點
被
軸反射后與
交于點
,若
,且
,則橢圓的離心率等于
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知雙曲線
的一條漸近線與直線
垂直,則曲線的離心率等于
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知某橢圓的焦點是
F1(-4,0)、
F2(4,0),過點
F2并垂直于
x軸的直線與橢圓的一個交點為
B,且|
F1B|+|
F2B|=10,橢圓上不同的兩點
A(
x1,
y1),
C(
x2,
y2)滿足條件 |
F2A|、|
F2B|、|
F2C|成等差數(shù)列(1)求該弦橢圓的方程;(2)求弦
AC中點的橫坐標(biāo);(3)設(shè)弦
AC的垂直平分線的方程為
y=
kx+
m,求
m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知雙曲線
的兩個焦點分別為
、
,則滿足△
的周長為
的動點
的軌跡方程為 ( )
查看答案和解析>>