(本題滿分12分)
如圖,在四棱錐中,
,
,
,平面
平面
,
是線段
上一點(diǎn),
,
,
.
(Ⅰ)證明:平面
;
(Ⅱ)設(shè)三棱錐與四棱錐
的體積分別為
與
,求
的值.
(Ⅰ),
,
平面
(Ⅱ)
【解析】
試題分析:(Ⅰ)平面
平面
,平面
平面
,
平面
,
,
平面
, ……1分
平面
……2分
四邊形
是直角梯形,
,
都是等腰直角三角形,
……4分
平面
,
平面
,
,
平面
. ……6分
(Ⅱ)三棱錐與三棱錐
的體積相等,
由(Ⅰ)知平面
,
得,
……9分
設(shè)由
,
得
從而 ……12分
考點(diǎn):本小題主要考查線面垂直的證明和三棱錐體積公式的應(yīng)用,考查學(xué)生的空間想象能力、推理論證能和轉(zhuǎn)化能力.
點(diǎn)評(píng):證明線、面之間的位置關(guān)系時(shí),要緊扣相關(guān)定理,一定要把定理所需條件一一列清楚;涉及到三棱錐體積問(wèn)題,常用“等體積法”解決相關(guān)問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分12分)已知數(shù)列是首項(xiàng)為
,公比
的等比數(shù)列,,
設(shè),數(shù)列
.
(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列
的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR
},B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)(
,
為常數(shù)),且方程
有兩個(gè)實(shí)根為
.
(1)求的解析式;
(2)證明:曲線的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分12分,(Ⅰ)小問(wèn)4分,(Ⅱ)小問(wèn)6分,(Ⅲ)小問(wèn)2分.)
如圖所示,直二面角中,四邊形
是邊長(zhǎng)為
的正方形,
,
為
上的點(diǎn),且
⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大小;
(Ⅲ)求點(diǎn)到平面
的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com