已知函數(shù)f(x)=2ax3+6bx2+6ax+c(a>0)有兩個(gè)極值點(diǎn)x1、x2,則
A.當(dāng)a>b時(shí),f(x)在區(qū)間(-∞,-1)上是增函數(shù)
B.當(dāng)a<b時(shí),f(x)在區(qū)間(-∞,-1)上是減函數(shù)
C.當(dāng)a>b時(shí),f(x)存區(qū)間(1,+∞)上是增函數(shù)
D.當(dāng)a<b時(shí),f(x) 在區(qū)間(1,+∞)上是減函數(shù)
解析:∵函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2(不妨設(shè)x1<x2=,∴(x)=6a(x-x1)(x-x2). ∵a>0,∴當(dāng)x<x1或x>x2時(shí),(x)>0;當(dāng)x1<x<x2時(shí),(x)<0. ∵x1x2是方程 (x)=0,即ax2+2bx+a=0的兩個(gè)不同的實(shí)根,∴4b2-4a2>0,∴(a-b)(a+b)<0. ∵(-1)=12(a-b),(1)=12(a+b),∴(-1)·(1)<0.若a>b,則-1<x1<1, 故當(dāng)x<-1時(shí),(x)>0,即f(x)在區(qū)間(-∞,-1)上是增函數(shù);若a<b,同理可得f(x)在區(qū)間(1,+∞)是增函數(shù)選A. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:設(shè)計(jì)必修一數(shù)學(xué)北師版 北師版 題型:013
已知函數(shù)f(x)=2+log3x(1≤x≤9),則函數(shù)y=[f(x)]2+f(x2)的最大值為
A.6
B.13
C.22
D.33
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:學(xué)習(xí)高手必修一數(shù)學(xué)蘇教版 蘇教版 題型:013
已知函數(shù)f(x)=2-x2,g(x)=x.若f(x)·g(x)=min{f(x),g(x)},那么f(x)·g(x)的最大值是
1
2
3
4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 人教課標(biāo)高一版(A必修1) 2009-2010學(xué)年 第7期 總163期 人教課標(biāo)高一版 題型:044
已知函數(shù)f(x)=2(log2x)2+2alog2+b,當(dāng)x=時(shí),f(x)有最小值-8,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:陜西省寶雞市2010屆高三教學(xué)質(zhì)量檢測(cè)(二)數(shù)學(xué)文科試題 題型:013
已知函數(shù)f(x)=()2-log2x,若實(shí)數(shù)x0是方程f(x)=0的解,且0<x1<x0,則f(x1)值的情況是
恒為值負(fù)
等于0
恒為正值
不大于0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com