20.已知sin$\frac{θ}{2}+cos\frac{θ}{2}=\frac{{2\sqrt{2}}}{3}$,則cos2θ=$\frac{79}{81}$.

分析 利用sin$\frac{θ}{2}+cos\frac{θ}{2}=\frac{{2\sqrt{2}}}{3}$,求出sinθ=-$\frac{1}{9}$,利用cos2θ=1-2sin2θ,可得結(jié)論.

解答 解:∵sin$\frac{θ}{2}+cos\frac{θ}{2}=\frac{{2\sqrt{2}}}{3}$,
∴1+sinθ=$\frac{8}{9}$,
∴sinθ=-$\frac{1}{9}$,
∴cos2θ=1-2sin2θ=1-2×$\frac{1}{81}$=$\frac{79}{81}$.
故答案為$\frac{79}{81}$.

點評 本題考查二倍角的余弦,考查同角三角函數(shù)關系的運用,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知集合A={x|-1<x<2},B={x|x2+2x≤0},則A∩B=(  )
A.{x|0<x<2}B.{x|0≤x<2}C.{x|-1<x<0}D.{x|-1<x≤0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的焦距為10,點P(2,1)在其漸近線上,則該雙曲線的方程為( 。
A.$\frac{x^2}{80}-\frac{y^2}{20}=1$B.$\frac{x^2}{20}-\frac{y^2}{80}=1$C.$\frac{x^2}{20}-\frac{y^2}{5}=1$D.$\frac{x^2}{5}-\frac{y^2}{20}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.某校周四下午第五、六兩節(jié)是選修課時間,現(xiàn)有甲、乙、丙、丁四位教師可開課.已知甲、乙教師各自最多可以開設兩節(jié)課,丙、丁教師各自最多可以開設一節(jié)課.現(xiàn)要求第五、六兩節(jié)課中每節(jié)課恰有兩位教師開課(不必考慮教師所開課的班級和內(nèi)容),則不同的開課方案共有19種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設$\overrightarrow a,\overrightarrow b,\overrightarrow c$為非零向量且相互不共線,下面四個命題:其中正確的是(  )
$(1)({\overrightarrow a•\overrightarrow b})•\overrightarrow c-({\overrightarrow a•\overrightarrow c})•\overrightarrow b=0$;            
$(2)|{\overrightarrow a}|-|{\overrightarrow b}|<|{\overrightarrow a-\overrightarrow b}|$;
$(3)({\overrightarrow b•\overrightarrow c})•\overrightarrow a-({\overrightarrow a•\overrightarrow c})•\overrightarrow b不與\overrightarrow c垂直$;    
 $(4)({3\overrightarrow a+2\overrightarrow b})•({3\overrightarrow a-2\overrightarrow b})=9{|{\overrightarrow a}|^2}-4{|{\overrightarrow b}|^2}$.
A.(1)(2)B.(2)(3)C.(3)(4)D.(2)(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在等腰直角三角形ABC中,AB=AC=2,點P是邊AB上異于A,B的一點,光線從點P出發(fā),經(jīng)BC,CA發(fā)射后又回到原點P(如圖).若光線QR經(jīng)過△ABC的重心,則AP等于( 。
A.$\frac{1}{2}$B.1C.$\frac{4}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.偶函數(shù)f(x)在x>0時,函數(shù)f′(x)=x2+ax+b,則f(x)的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若集合A={1,2,4,5},B={-1,2,4},則集合A∩B={2,4}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知集合A={x|2<x<4},B={x|x>3或x<1},則A∩B=( 。
A.{x|2<x<5}B.{x|x<4或x>5}C.{x|3<x<4}D.{x|x<2或x>5}

查看答案和解析>>

同步練習冊答案