【題目】張師傅欲將一球形的石材工件削砍加工成一圓柱形的新工件,已知原球形工件的半徑為,則張師傅的材料利用率的最大值等于(注:材料利用率=)( )

A. B. C. D.

【答案】C

【解析】設(shè)球半徑為R,圓柱的體積為時(shí)圓柱的體積最大為 ,因此材料利用率= ,選C.

點(diǎn)睛:空間幾何體與球接、切問題的求解方法

求解球與棱柱、棱錐的接、切問題時(shí),一般過球心及接、切點(diǎn)作截面,把空間問題轉(zhuǎn)化為平面圖形與圓的接、切問題,再利用平面幾何知識尋找?guī)缀沃性亻g的關(guān)系求解.

型】單選題
結(jié)束】
12

【題目】已知拋物線 在點(diǎn)處的切線與曲線 相切,若動直線分別與曲線、相交于、兩點(diǎn),則的最小值為( )

A. B. C. D.

【答案】D

【解析】

,D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三男生體育課上做投籃球游戲,兩人一組,每輪游戲中,每小組兩人每人投籃兩次,投籃投進(jìn)的次數(shù)之和不少于次稱為優(yōu)秀小組”.小明與小亮同一小組,小明、小亮投籃投進(jìn)的概率分別為.

1)若,,則在第一輪游戲他們獲優(yōu)秀小組的概率;

2)若則游戲中小明小亮小組要想獲得優(yōu)秀小組次數(shù)為次,則理論上至少要進(jìn)行多少輪游戲才行?并求此時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著社會經(jīng)濟(jì)高速發(fā)展,人民的生活水平越來越高,部分學(xué)校安裝了中央空調(diào),某校數(shù)學(xué)建模隊(duì)調(diào)查了某品牌中央空調(diào),得到該設(shè)備使用年限x(單位:年)和維修總費(fèi)用y(單位:萬元)的統(tǒng)計(jì)表如下:(每年年底維修保養(yǎng))

使用年限x(單位:年)

2

3

4

5

6

維修總費(fèi)用y(單位:萬元)

1

3

4

由上表可得線性回歸方程,則根據(jù)此模型預(yù)報(bào)該品牌中央空調(diào)第8年年底的維修費(fèi)用約為(

A.萬元B.萬元C.萬元D.萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C (a>b>0)的左右焦點(diǎn)分別為F1,F2點(diǎn).M為橢圓上的一動點(diǎn),△MF1F2面積的最大值為4.過點(diǎn)F2的直線l被橢圓截得的線段為PQ,當(dāng)lx軸時(shí),.

1)求橢圓C的方程;

2)過點(diǎn)F1作與x軸不重合的直線l,l與橢圓交于A,B兩點(diǎn),點(diǎn)A在直線上的投影N與點(diǎn)B的連線交x軸于D點(diǎn),D點(diǎn)的橫坐標(biāo)x0是否為定值?若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為考察某動物疫苗預(yù)防某種疾病的效果,現(xiàn)對200只動物進(jìn)行調(diào)研,并得到如下數(shù)據(jù):

未發(fā)病

發(fā)病

合計(jì)

未注射疫苗

20

60

80

注射疫苗

80

40

120

合計(jì)

100

100

200

(附:

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

則下列說法正確的:(

A.至少有99.9%的把握認(rèn)為“發(fā)病與沒接種疫苗有關(guān)”

B.至多有99%的把握認(rèn)為“發(fā)病與沒接種疫苗有關(guān)”

C.至多有99.9%的把握認(rèn)為“發(fā)病與沒接種疫苗有關(guān)”

D.“發(fā)病與沒接種疫苗有關(guān)”的錯誤率至少有0.01%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.

(Ⅰ)求曲線的直角坐標(biāo)方程和直線的普通方程;

(Ⅱ)若直線與曲線相交于, 兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),左焦點(diǎn)、右焦點(diǎn)都在軸上,點(diǎn)是橢圓上的動點(diǎn),的面積的最大值為,在軸上方使成立的點(diǎn)只有一個.

(1)求橢圓的方程;

(2)過點(diǎn)的兩直線,分別與橢圓交于點(diǎn)和點(diǎn),,且,比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,且點(diǎn)在橢圓上.

求橢圓的標(biāo)準(zhǔn)方程;

已知動直線過點(diǎn)且與橢圓交于兩點(diǎn).試問軸上是否存在定點(diǎn),使得恒成立?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從一批蘋果中,隨機(jī)抽取50個,其重量(單位:克)的頻數(shù)分布表如下:

1)根據(jù)頻數(shù)分布表計(jì)算蘋果的重量在的頻率;

2)用分層抽樣的方法從重量在的蘋果中共抽取4個,其中重量在的有幾個?

3)在(2)中抽出的4個蘋果中,任取2個,寫出所有可能的結(jié)果,并求重量在中各有1個的概率.

查看答案和解析>>

同步練習(xí)冊答案