5.復(fù)數(shù)z滿足z•i=3-i,則在復(fù)平面內(nèi),復(fù)數(shù)z對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,求出z的坐標(biāo)得答案.

解答 解:由z•i=3-i,得$z=\frac{3-i}{i}=\frac{(3-i)(-i)}{-{i}^{2}}=-1-3i$,
∴復(fù)數(shù)z對應(yīng)的點(diǎn)的坐標(biāo)為(-1,-3),位于第三象限.
故選:C.

點(diǎn)評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)數(shù)列{an}的前n項和為Sn,點(diǎn)(n,$\frac{{S}_{n}}{n}$),n∈N*均在函數(shù)y=x的圖象上.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若{bn}為等比數(shù)列,且b1=1,b1b2b3=8,求數(shù)列{an+bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.條件p:x2-4x-5<0是條件q:x2+6x+5>0的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知{|an|}是首項和公差均為1的等差數(shù)列,S3=a1+a2+a3,則a3=±3,S3的所有可能值的集合為{-6,-4,-2,0,2,4,6}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.△ABC的內(nèi)角A,B,C的對邊分別是a,b,c,若B=2A,a=1,b=$\sqrt{3}$,則邊c=( 。
A.1B.2C.$\sqrt{2}$D.2或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知等差數(shù)列{an}的前n項和為Sn,且滿足a3=2,S5=a7
(Ⅰ)求數(shù)列{an}的通項公式an及Sn;
(Ⅱ)若a4,a4+m,a4+n(m,n∈N*)成等比數(shù)列,求n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)$f(x)=\frac{{(1-a){x^2}-ax+a}}{e^x}$
(1)當(dāng)a=1時,求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)x≥0時,f(x)的最大值為a,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知tanα=-$\frac{1}{3}$,求下列各式的值:
(1)$\frac{4sinα-2cosα}{5cosα+3sinα}$;
(2)2sin2α-$\frac{3}{2}$sinαcosα+5cos2α;
(3)$\frac{1}{1-sinαcosα}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆四川成都七中高三10月段測數(shù)學(xué)(文)試卷(解析版) 題型:解答題

有兩枚大小相同、質(zhì)地均勻的正四面體玩具,每個玩具的各個面上上分別寫著數(shù)字1,2,3,5,同時投擲這兩枚玩具一次,記為兩個朝下的面上的數(shù)字之和.

(1)求事件“不小于6”的概率;

(2)“為奇數(shù)”的概率和“為偶數(shù)”的概率是不是相等?證明你作出的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案