已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左頂點(diǎn)為A,左焦點(diǎn)為F,上頂點(diǎn)為B,且∠BAO+∠BFO=90°(O為坐標(biāo)原點(diǎn)),則橢圓的離心率e=( 。
A、
5
-1
2
B、
1
2
C、
3
-1
2
D、
3
2
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專(zhuān)題:圓錐曲線的定義、性質(zhì)與方程
分析:先作出橢圓的右焦點(diǎn)F′,根據(jù)條件得出AB⊥BF′.再求出A、B、F′的坐標(biāo),由 兩個(gè)向量的數(shù)量積的性質(zhì)得出a,b、c的關(guān)系建立關(guān)于離心率e的方程,解方程求得橢圓C的離心率e.
解答: 解:設(shè)橢圓的右焦點(diǎn)為F′,
由題意得 A(-a,0)、B(0,b),F(xiàn)′(c,0),
∵∠BAO+∠BFO=90°,且∠BFO=∠BF′O,
∴∠BAO+∠BF′O=90°,
AB
BF
=0,
∴(a,b)•(c,-b)=ac-b2=ac-a2+c2=0,
∴e-1+e2=0,
解得 e=
5
-1
2
,
故選A.
點(diǎn)評(píng):本題考查橢圓的簡(jiǎn)單性質(zhì)的應(yīng)用,兩個(gè)向量的數(shù)量積公式的應(yīng)用,以及一元二次方程的解法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正實(shí)數(shù)a,b,c滿足a+b+c=1,
1
a
+
1
b
+
1
c
=10,則abc的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的頂點(diǎn)B、C在橢圓
x2
4
+
y3
3
=1上,頂點(diǎn)A是橢圓的一個(gè)焦點(diǎn),且橢圓的另外一個(gè)焦點(diǎn)在BC邊上,則△ABC的周長(zhǎng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式|x+1|+|x-2|>a的解集為R,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

規(guī)定函數(shù)y=f(x)圖象上的點(diǎn)到坐標(biāo)原點(diǎn)距離的最小值叫做函數(shù)y=f(x)的“中心距離”,給出以下四個(gè)命題:
①函數(shù)y=
1
x
的“中心距離”大于1;
②函數(shù)y=
-x2-4x+5
的“中心距離”大于1;
③若函數(shù)y=f(x)(x∈R)與y=g(x)(x∈R)的“中心距離”相等,則函數(shù)h(x)=f(x)-g(x)至少有一個(gè)零點(diǎn).
以上命題是真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:sin50°+cos40°(1+
3
tan10°)÷cos220°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD的底面是矩形,側(cè)面PAD是正三角形,且CD⊥面PAD,E 為側(cè)棱PD的中點(diǎn).
(1)求證:PB∥平面EAC;
(2)求證:AE⊥平面PCD;
(3)若直線AC與平面PCD所成的角為45°,求
AD
CD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cos2x=
1
3
,x∈(
π
2
,π)
,則sin4x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC,tanA=
1
2
,tanC=
1
3
,則∠B=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案