分析 可推出當(dāng)x→0+時,x${e}^{\frac{1}{{x}^{2}}}$→+∞;當(dāng)x→0-時,x${e}^{\frac{1}{{x}^{2}}}$→-∞;從而解得.
解答 解:當(dāng)x→0+時,
y=x${e}^{\frac{1}{{x}^{2}}}$=$\frac{{e}^{\frac{1}{{x}^{2}}}}{\frac{1}{x}}$>$\frac{{e}^{\frac{1}{{x}^{2}}}}{\frac{1}{{x}^{2}}}$,
易知$\frac{{e}^{\frac{1}{{x}^{2}}}}{\frac{1}{{x}^{2}}}$→+∞;
同理可知,當(dāng)x→0-時,x${e}^{\frac{1}{{x}^{2}}}$→-∞;
故y=x${e}^{\frac{1}{{x}^{2}}}$的鉛直漸近線是x=0,
故答案為:x=0.
點(diǎn)評 本題考查了函數(shù)的極限的求法及應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com