10.已知函數(shù)f(x)=2$\sqrt{3}$sinxcosx-cos2x
(Ⅰ)求f(x)的最小正周期; 
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,$\frac{2π}{3}$]上的取值范圍.

分析 (Ⅰ)先利二倍角和輔助角公式將函數(shù)化為y=Asin(ωx+φ)的形式,再利用周期公式求函數(shù)的最小正周期.
(Ⅱ)x∈[0,$\frac{2π}{3}$]上時,求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖象和性質(zhì),求出f(x)的取值最大和最小值,即得到f(x)的取值范圍.

解答 解:(Ⅰ)函數(shù)f(x)=2$\sqrt{3}$sinxcosx-cos2x,
化簡可得:f(x)=$\sqrt{3}$sin2x-cos2x=2sin(2x-$\frac{π}{6}$)
函數(shù)的最小正周期T=$\frac{2π}{ω}=\frac{2π}{2}=π$.
(Ⅱ)x∈[0,$\frac{2π}{3}$]上時,
2x-$\frac{π}{6}$∈[$-\frac{π}{6}$,$\frac{7π}{6}$]
當(dāng)2x-$\frac{π}{6}$=$-\frac{π}{6}$或$\frac{7π}{6}$時,函數(shù)f(x)的取值最小值為-1,
當(dāng)2x-$\frac{π}{6}$=$\frac{π}{2}$時,函數(shù)f(x)的取值最大值為2,
故得函數(shù)f(x)在區(qū)間[0,$\frac{2π}{3}$]上的取值范圍是[-1,2].

點評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運用,利用三角函數(shù)公式將函數(shù)進行化簡是解決本題的關(guān)鍵.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若函數(shù)f(x)=$\left\{\begin{array}{l}\frac{a}{x},x>1\\(2-3a)x+1,x≤1\end{array}$是R上的減函數(shù),則實數(shù)R的取值范圍是 ( 。
A.$(\frac{2}{3},1)$B.$[\frac{3}{4},1)$C.$(\frac{2}{3},\frac{3}{4}]$D.($\frac{2}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.由曲線y=x 2-1,直線x=0,x=2和x軸圍成的封閉圖形的面積(如圖)可表示為( 。
A.${∫}_{0}^{2}$(x 2-1)dxB.${∫}_{0}^{2}$|(x 2-1)|dx
C.|${∫}_{0}^{2}$(x 2-1)dx|D.${∫}_{0}^{1}$(x 2-1)dx+${∫}_{1}^{2}$(x 2-1)dx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,A=$\frac{π}{6},BC=\frac{{4\sqrt{3}}}{3}$,AB=4,則C=( 。
A.$\frac{π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.f(x)是定義在R上圖形關(guān)于y軸對稱,且在[0,+∞)上是減函數(shù),下列不等式一定成立的是( 。
A.f[${\frac{2}{{2-{a^2}}}}$]<f(${{a^2}-2a+\frac{5}{4}}$)B.f[-cos60°]<f(tan30°)
C.f[-(cos60°)2]≥f(${{a^2}-2a+\frac{5}{4}}$)D.f[-sin45°]>f(-3a+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.向量$\overrightarrow{m}$,$\overrightarrow{n}$,分別對應(yīng)復(fù)數(shù)m,n,且m=$\frac{3}{a+5}$-(10-a2)i,n=$\frac{2}{1-a}$+(2a-5)i,其中a∈R,若m+n可以與任何實數(shù)比較大小,求$\overrightarrow{m}$與$\overrightarrow{n}$的數(shù)量積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知Rt△ABC的頂點分別為A(1,2),B(-1,-2).,C(1,-2),圓E是△ABC的外接圓.
(I)求圓E的方程;
(II)求直線lmx-y-m+1=0被圓E截得的最短弦長及對應(yīng)的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.通過研究學(xué)生的學(xué)習(xí)行為,心理學(xué)家發(fā)現(xiàn),學(xué)生的接受能力依賴于老師引入概念和描述問題所用的時間:講授開始時,學(xué)生的興趣激增;中間有一段不太長的時間,學(xué)生的興趣保持較理想的狀態(tài);隨后學(xué)生的注意力開始分散.分析結(jié)果和實驗表明,用f(x)表示學(xué)生掌握和接受概念的能力(f(x)的值越大,表示學(xué)生的接受能力越強),x表示提出和講授概念的時間(單位:min),可有以下公式:f(x)=$\left\{\begin{array}{l}{-0.1{x}^{2}+2.6x+43(0<x≤10)}\\{59(10<x≤16)}\\{-3x+107(16<x≤30)}\end{array}\right.$
(1)講課開始后5min和講課開始后20min比較,何時學(xué)生的注意力更集中?
(2)講課開始后多少分鐘,學(xué)生的注意力最集中,能持續(xù)多久?
(3)一道數(shù)學(xué)難題,需要講解13min,并且要求學(xué)生的注意力至少達到55,那么老師能否在學(xué)生達到所需狀態(tài)下講授完這道題目?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足b2+c2-a2=bc,$\overrightarrow{AB}$•$\overrightarrow{BC}$>0,a=$\frac{\sqrt{3}}{2}$,則b+c的取值范圍是(  )
A.(1,$\frac{3}{2}$)B.($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$)C.($\frac{1}{2}$,$\frac{3}{2}$)D.($\frac{1}{2}$,$\frac{3}{2}$]

查看答案和解析>>

同步練習(xí)冊答案