【題目】已知函數(shù),其中

(1)若函數(shù)在點(diǎn)處的切線(xiàn)方程為,求的值;

(2)若函數(shù)有兩個(gè)極值點(diǎn),證明:成等差數(shù)列;

(3)若函數(shù)有三個(gè)零點(diǎn),對(duì)任意的,不等式恒成立,求的取值范圍.

【答案】(1);(2)見(jiàn)解析;(3)

【解析】

(1)由導(dǎo)數(shù)的幾何意義可得解;

(2)由等差數(shù)列的判定,只需證明,代入運(yùn)算即可;

(3)由導(dǎo)數(shù)的綜合應(yīng)用,求函數(shù)的單調(diào)性,再求函數(shù)的最值,解不等式即可得解.

解:(1)由函數(shù)在點(diǎn)處的切線(xiàn)方程為,

,又

,

;

(2)要證成等差數(shù)列,

只需證明

又函數(shù)有兩個(gè)極值點(diǎn),則,

+=

= ,

命題得證;

(3)由函數(shù)有三個(gè)零點(diǎn),

,解得有兩個(gè)根為

于是有 ,即,

有兩個(gè)相異的實(shí)根,不妨設(shè)為,

①當(dāng)時(shí),

函數(shù)在為減函數(shù),在為增函數(shù),

所以,

故不等式恒成立,

② 當(dāng)時(shí), ,

函數(shù)為減函數(shù),在, 為增函數(shù),

,

=

對(duì)于任意的,不等式恒成立,

于是,

,

,

,則 ,

解得,

解得,即,

綜上可得的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=|x-m|-|2x+2m|m0).

(Ⅰ)當(dāng)m=1時(shí),求不等式fx)≥1的解集;

(Ⅱ)若xR,tR,使得fx+|t-1||t+1|,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同長(zhǎng)度單位建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.

(Ⅰ)求曲線(xiàn)和直線(xiàn)的直角坐標(biāo)方程;

(Ⅱ)直線(xiàn)軸交點(diǎn)為,經(jīng)過(guò)點(diǎn)的直線(xiàn)與曲線(xiàn)交于,兩點(diǎn),證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在三棱柱中,,,,分別為棱,的中點(diǎn).

(1)求證:平面;

(2)若,,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種規(guī)格的矩形瓷磚根據(jù)長(zhǎng)期檢測(cè)結(jié)果,各廠(chǎng)生產(chǎn)的每片瓷磚質(zhì)量都服從正態(tài)分布,并把質(zhì)量在之外的瓷磚作為廢品直接回爐處理,剩下的稱(chēng)為正品.

(Ⅰ)從甲陶瓷廠(chǎng)生產(chǎn)的該規(guī)格瓷磚中抽取10片進(jìn)行檢查,求至少有1片是廢品的概率;

(Ⅱ)若規(guī)定該規(guī)格的每片正品瓷磚的“尺寸誤差”計(jì)算方式為:設(shè)矩形瓷磚的長(zhǎng)與寬分別為、,則“尺寸誤差”,按行業(yè)生產(chǎn)標(biāo)準(zhǔn),其中“優(yōu)等”、“一級(jí)”、“合格”瓷磚的“尺寸誤差”范圍分別是、,、,(正品瓷磚中沒(méi)有“尺寸誤差”大于的瓷磚),每片價(jià)格分別為7.5元、6.5元、5.0元.現(xiàn)分別從甲、乙兩廠(chǎng)生產(chǎn)的該規(guī)格的正品瓷磚中隨機(jī)抽取100片瓷磚,相應(yīng)的“尺寸誤差”組成的樣本數(shù)據(jù)如下:

尺寸誤差

0

0.1

0.2

0.3

0.4

0.5

0.6

頻數(shù)

10

30

30

5

10

5

10

(甲廠(chǎng)瓷磚的“尺寸誤差”頻數(shù)表)用這個(gè)樣本的頻率分布估計(jì)總體分布,將頻率視為概率.

(ⅰ)記甲廠(chǎng)該種規(guī)格的2片正品瓷磚賣(mài)出的錢(qián)數(shù)為(元,求的分布列及數(shù)學(xué)期望

(ⅱ)由如圖可知,乙廠(chǎng)生產(chǎn)的該規(guī)格的正品瓷磚只有“優(yōu)等”、“一級(jí)”兩種,求5片該規(guī)格的正品瓷磚賣(mài)出的錢(qián)數(shù)不少于36元的概率.

附:若隨機(jī)變量服從正態(tài)分布,則,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1,AA1ABAC2,ABACM是棱BC的中點(diǎn)點(diǎn)P在線(xiàn)段A1B

(1)若P是線(xiàn)段A1B的中點(diǎn),求直線(xiàn)MP與直線(xiàn)AC所成角的大。

(2)若的中點(diǎn),直線(xiàn)與平面所成角的正弦值為,求線(xiàn)段BP的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若函數(shù)的極小值為0,求的值;

(2),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

已知函數(shù),且。

I)試用含的代數(shù)式表示

)求的單調(diào)區(qū)間;

)令,設(shè)函數(shù)處取得極值,記點(diǎn),證明:線(xiàn)段與曲線(xiàn)存在異于、的公共點(diǎn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】每年春晚都是萬(wàn)眾矚目的時(shí)刻,這些節(jié)目體現(xiàn)的文化內(nèi)涵、歷史背景等反映了社會(huì)的進(jìn)步.國(guó)家的富強(qiáng),人民生活水平的提高等.某學(xué)校高三年級(jí)主任開(kāi)學(xué)初為了解學(xué)生在看春晚后對(duì)節(jié)目體現(xiàn)的文化內(nèi)涵、歷史背景等是否會(huì)在今年的高考題中體現(xiàn)進(jìn)行過(guò)思考,特地隨機(jī)抽取100名高三學(xué)生(其中文科學(xué)生50,理科學(xué)生50名),進(jìn)行了調(diào)查.統(tǒng)計(jì)數(shù)據(jù)如表所示(不完整):

“思考過(guò)”

“沒(méi)有思考過(guò)”

總計(jì)

文科學(xué)生

40

10

理科學(xué)生

30

總計(jì)

100

(1)補(bǔ)充完整所給表格,并根據(jù)表格數(shù)據(jù)計(jì)算是否有的把握認(rèn)為看春晚后會(huì)思考節(jié)目體現(xiàn)的文化內(nèi)涵、歷史背景等與文理科學(xué)生有關(guān);

(2)①現(xiàn)從上表的”思考過(guò)”的文理科學(xué)生中按分層抽樣選出7人.再?gòu)倪@7人中隨機(jī)抽取4人,記這4人中“文科學(xué)生”的人數(shù)為,試求的分布列與數(shù)學(xué)期望;

②現(xiàn)設(shè)計(jì)一份試卷(題目知識(shí)點(diǎn)來(lái)自春晚相關(guān)知識(shí)整合與變化),假設(shè)“思考過(guò)”的學(xué)生及格率為,“沒(méi)有思考過(guò)”的學(xué)生的及格率為.現(xiàn)從“思考過(guò)”與“沒(méi)有思考過(guò)”的學(xué)生中分別隨機(jī)抽取一名學(xué)生進(jìn)行測(cè)試,求兩人至少有一個(gè)及格的概率.

附參考公式:,其中.

參考數(shù)據(jù):

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案